next up previous
Next: 2.6 挑戦課題3C Up: 2 FOR 〜 NEXT Previous: 2.4 和 の計算

2.5 課題3B

自然数 $ n$ が与えられときに

$\displaystyle s_n:=\dsp\sum_{j=1}^n \dfrac{1}{j},
\quad
t_n:=\dsp\sum_{j=1}^n \dfrac{1}{j^2}
$

を計算するプログラムを書き、 $ n=1$, $ 10$, $ 100$, $ 1000$, $ \dots$ のとき1、値がどうなるか調べ (記録を取ること)、 説明せよ。 なお、 $ n\to\infty$ のとき $ s_n$, $ t_n$ がどうなるか、 よく知られたことでもある (収束・発散については基礎数学IVで学んだはず)。 それを知っているのならば、そのことを踏まえて結果を説明せよ。 締め切りは5月23日とする予定だったが、少し延す。


工夫のヒント: 工夫すると、 1つのプログラムで複数の $ n$ の値に対する $ s_n$, $ t_n$ の値を 一気に計算することができる。 そういうプログラムを提出してくれればなおよい。


next up previous
Next: 2.6 挑戦課題3C Up: 2 FOR 〜 NEXT Previous: 2.4 和 の計算
Masashi Katsurada
平成18年5月31日