next up previous contents
Next: A.5.3.0.1 $BId9f$NJQ2=?t$N7W;;$K4X$9$kCm0U(B Up: A.5 Strum $B$NJ}K!(B Previous: A.5.2 $B%f!<%/%j%C%I$N8_=|K!$K$h$k(B Strum $BNs$N@8@.(B

A.5.3 3$B=EBP3Q9TNs$N8GM-B?9`<0$H(B Strum $BNs(B

$\displaystyle T=\left(
\begin{array}{ccccc}
a_1 & b_1 & 0 & & \bigzerou \\
b_1...
...-2} & a_{N-1} & b_{N-1} \\
\bigzerol & & 0 & b_{N-1} & a_N
\end{array}\right)
$

$B$rN;0=EBP3Q9TNs$H$9$k!#(B


\begin{jremark}[$B$A$g$C$H$7$?(B]\upshape
$B<B$O0J2<$N5DO@$G(B $T$\ $B$NBP>N@-$O$

$ b_k\ne 0$ ( $ k=1,2,\cdots,N-1$) $B$H2>Dj$9$k!#$b$7$"$k(B $ k$ $B$KBP$7$F(B $ b_k\ne 0$ $B$J$i$P(B

$\displaystyle T = \left(\begin{array}{cc}T' & O \\ O & T''\end{array}\right)
$

$B$H$J$j!"(B$ T'$, $ T''$ $B$N8GM-CM$r5a$a$kLdBj$K5"Ce$G$-$k$+$i!"0lHL@-$O<:(B $B$o$l$J$$!#(B

$ p_k(\lambda)$ $B$r(B $ \lambda I-T$ $B$NBh(B $ k$ $B $ k=0,1,\cdots,N$)$B!#$9$J$o$A(B

(A.7) $\displaystyle p_k(\lambda):= \left\{ \begin{array}{ll} \det(\lambda I_k-T_k) & \mbox{($k=1,2,\cdots,N$)}\\ 1 &\mbox{($k=0$)} \end{array} \right. .$

$B$?$@$7!"(B

$\displaystyle I_k=$$\displaystyle \mbox{$k$\ $B<!$NC10L9TNs(B}$$\displaystyle ,\quad
T_k=\left(
\begin{array}{ccccc}
a_1 & b_1 & 0 & & \bigzero...
...2} & a_{k-1} & b_{k-1} \\
\bigzerol & & 0 & b_{k-1} & a_k
\end{array}\right).
$

$B$9$0J,$+$kL?Bj$rFs$D!#(B

\begin{jlemma}
% latex2html id marker 1205
[$BA22=<0(B]\upshape
(\ref{eq:pk$B$NDj5A(B})...
...mbda) & = & \det(\lambda I-T).
\end{array}\right.
\end{displaymath}\end{jlemma}

Proof. $B9TNs<0$N9T$K4X$9$kE83+DjM}$rMQ$$$k!#(B$ \qedsymbol$ ARRAY(0x12f6258) $ \qedsymbol$


\begin{jlemma}
% latex2html id marker 1221
[Strum $BNs$G$

Proof.
  1. $B$b$7$b(B $ p_k(\lambda_0)=p_{k+1}(\lambda_0)=0$ $B$H$9$k$H!"A22=<0$+$i(B $ {b_k}^2p_{k-1}(\lambda_0)=0$. $ b_k=0$ $B$H2>Dj$7$?$+$i(B $ p_{k-1}(\lambda_0)=0$. $B$3$l$r7+$jJV$9$H(B

    $\displaystyle 0=p_{k+1}(\lambda_0)=p_k(\lambda_0)=p_{k-1}(\lambda_0)=\cdots
=p_{2}(\lambda_0)=p_1(\lambda_0)=p_0(\lambda_0).
$

    $B$3$l$+$i(B

    $\displaystyle p_0(\lambda_0)=0
$

    $B$3$l$O(B $ p_0\equiv 1$ $B$KL7=b$9$k!#(B
  2. $ p_k(\lambda_0)=0$ $B$rA22=<0$KBeF~$9$k$H(B $ p_{k+1}(\lambda_0)=-{b_k}^2
p_{k-1}(\lambda_0)$. $BA09`$h$j:8JU(B $ \ne 0$. $B$3$l$+$i(B $ p_{k+1}(\lambda_0)$, $ p_{k-1}(\lambda_0)$ $B$O0[Id9f$G$"$k!#(B $ \qedsymbol$
  3. $ p_0(\lambda)\equiv 1$ $B$G$"$k$+$iL@$i$+!#(B
  4. $BA22=<0(B

    (A.8) $\displaystyle p_{k}(\lambda)= (\lambda-a_{k})p_{k-1}(\lambda)-{b_{k-1}}^2 p_{k-2}(\lambda)$

    $B$rHyJ,$9$k$H!"(B

    (A.9) $\displaystyle p_{k}'(\lambda)= p_{k-1}(\lambda)+(\lambda-a_{k})p_{k-1}'(\lambda) -{b_{k-1}}^2p_{k-2}'(\lambda).$

    (A.8) $B$H(B (D.5) $B$+$i(B

    (A.10) $\displaystyle p_{k}'(\lambda)p_{k-1}(\lambda)-p_{k}(\lambda)p_{k-1}'(\lambda) =...
...)p_{k-2}(\lambda)-p_{k-1}(\lambda)p_{k-2}'(\lambda) \right) +p_{k-1}^2(\lambda)$

    $B$,F@$i$l$k!#$3$3$G(B

    $\displaystyle q_{k}(\lambda)
:= p_{k}'(\lambda)p_{k-1}'(\lambda)
-p_{k}(\lambda)p_{k-1}(\lambda)
$

    $B$H$*$/$H(B (A.10) $B$O(B

    $\displaystyle q_{k}(\lambda)=p_{k-1}(\lambda)^2
+\beta_{k-1}(\lambda)^2q_{k-1}(\lambda)$   $\displaystyle \mbox{($k=2,3,\cdots,N$)}$$\displaystyle .$

    $B$H$J$k!#$H$3$m$G(B

    $\displaystyle q_1(\lambda)=p_{1}'(\lambda)p_{0}(\lambda)
-p_{1}(\lambda)p_{0}'(\lambda)
=p_{1}'(\lambda)=1\cdot1-(\lambda-\alpha_1)\cdot 0=1>0
$

    $B$G$"$k$+$i!"0J2<5"G0\quad\mbox{($k=2,3,\cdots,N$)}. \end{displaymath} -->

    $\displaystyle q_k(\lambda)>0$   $\displaystyle \mbox{($k=2,3,\cdots,N$)}$$\displaystyle .$

    $BFC$K(B

    $\displaystyle q_{N}(\lambda)=p_{N}'(\lambda)p_{N-1}(\lambda)
-p_{N}(\lambda)p_{N-1}'(\lambda)>0
$

    $B$G$"$k$,!"(B $ p_N(\lambda)=0$ $B$G$"$k$+$i(B

    $\displaystyle p_{N}'(\lambda)p_{N-1}(\lambda)>0. \quad\qed
$

ARRAY(0x12f648c) $ \qedsymbol$




next up previous contents
Next: A.5.3.0.1 $BId9f$NJQ2=?t$N7W;;$K4X$9$kCm0U(B Up: A.5 Strum $B$NJ}K!(B Previous: A.5.2 $B%f!<%/%j%C%I$N8_=|K!$K$h$k(B Strum $BNs$N@8@.(B
Masashi Katsurada
$BJ?@.(B21$BG/(B7$B7n(B9$BF|(B