next up previous contents
Next: A.5.3 3$B=EBP3Q9TNs$N8GM-B?9`<0$H(B Strum $BNs(B Up: A.5 Strum $B$NJ}K!(B Previous: A.5.1.0.2 (2) $B$N>ZL@(B

A.5.2 $B%f!<%/%j%C%I$N8_=|K!$K$h$k(B Strum $BNs$N@8@.(B

$BB?9`<0(B $ f(x)\in\R[x]$ $B$,M?$($i$l$?$H$-!"(B $ f_0(x)=f(x)$ $B$H(B $ f_1(x)=f'(x)$ $B$+$i(B Euclid $B$N8_=|K!$r9T$$!"4X?tNs(B $ f_0(x)$, $ f_1(x)$, $ \cdots$, $ f_\ell(x)$ $B$r:n$k(B:

(A.5) $\displaystyle f_0(x):= f(x), \quad f_1(x):= f'(x),$


  $\displaystyle f(x)$ $\displaystyle =$ $\displaystyle q_1(x)f_1(x)-f_2(x), \quad \deg f_{2}(x)<\deg f_{1}(x),$
  $\displaystyle f_1(x)$ $\displaystyle =$ $\displaystyle q_2(x)f_2(x)-f_3(x), \quad \deg f_{3}(x)<\deg f_{2}(x),$
  $\displaystyle f_2(x)$ $\displaystyle =$ $\displaystyle q_3(x)f_3(x)-f_4(x), \quad \deg f_{4}(x)<\deg f_{3}(x),$
    $\displaystyle \vdots$  
(A.6) $\displaystyle f_{k-1}(x)$ $\displaystyle =$ $\displaystyle q_{k-1}(x)f_{k}(x)-f_{k+1}(x),
\quad \deg f_{k+1}(x)<\deg f_{k}(x),$
    $\displaystyle \vdots$  
  $\displaystyle f_{\ell-2}(x)$ $\displaystyle =$ $\displaystyle q_{\ell-1}(x)f_{\ell-1}(x)-f_\ell(x),
\quad \deg f_{\ell}(x)<\deg f_{\ell-1}(x),$
  $\displaystyle f_{\ell-1}(x)$ $\displaystyle =$ $\displaystyle q_{\ell}(x)f_\ell(x).$

($BIaDL$N8_=|K!$H0[$J$j!"(B $ f_{k-1}(x)$ $B$r(B $ f_{k}(x)$ $B$G3d$C$?$H$-$N(B $BIaDL$N>jM>(B $ \times (-1)$ $B$r(B $ f_{k+1}(x)$ $B$H$9$k!#(B)

$B$h$/CN$i$l$F$$$k$h$&$K(B $ f_\ell(x)$ $B$O(B $ f(x)$ $B$H(B $ f'(x)$ $B$N:GBg8xLsB?9`(B $B<0$G$"$k$+$i!"(B $ f(x)\in\R[x]$ $B$,=E:,$r;}$?$J$$>l9g!"(B $ f_\ell(x)\equiv$   $BDj?t(B ($ \ne 0$) $B$H$J$k$3$H$KCm0U$7$h$&!#(B $B0J2<$3$N>l9g$K(B $ f(x)=0$ $B$N2r(B ($B:,(B) $B$r5a$a$k$3$H$r9M$($k!#(B $ f(x)$ $B$,=E:,$r;}$D>l9g$O(B $ f(x)$ $B$NBe$o$j$K(B $ g(x)=f(x)/f_\ell(x)$ $B$r9M$($k$3$H$GF1MM$N5DO@$,$G$-$k!#(B


\begin{jtheorem}
% latex2html id marker 1157
\upshape
$f(x)\in\R[x]$\ $B$,=E:,$r(B..
...x), f_2(x),\cdots, f_\ell(x)
\end{displaymath}$B!

Proof. $B!"!+!"%3(B $ f_\ell(x)\equiv$$B%HtA$G$"$k$+$i!"(BStrum $BNs$N>r7o(B (3) $B$OK~(B $B$?$5$l$F$$$k!# $ x_0\in [a,b]$, $B$"$k(B $ k\in\{0,1,\cdots,\ell-1\}$ $B$KBP$7$F(B

$\displaystyle f_{k}(x_0)=f_{k+1}(x_0)=0
$

$B$H$J$C$?$H$9$k$H!"<0(B (A.8) $B$+$i(B $ f_{k+2}(x_0)$ $B0J9_$N(B $ f_j(x_0)$ $B$b$9$Y$F(B 0 $B$K$J$j!"FC$K(B $ f_\ell(x_0)=0$. $B$3$l$O(B $ f_\ell(x)$ $B$,Dj?t4X?t(B ($ \ne 0$) $B$G$"$k$3$H$KL7=b$9$k!#$f$($K(B Strum $BNs$N>r7o(B (1) $B$,(B $BK~$?$5$l$k!#(B $B, $B$"$k(B $ k\in\{1,2,\cdots,\ell-1\}$ $B$K(B $BBP$7$F(B $ f_k(x_0)=0$ $B$H$J$C$?$H$9$k$H!"<0(B (A.8) $B$+$i(B

$\displaystyle f_{k-1}(x_0)=-f_{k+1}(x_0).
$

$B$f$($K(B Strum $BNs$N>r7o(B (2) $B$bK~$?$5$l$k(B ($B>r7o(B (3) $B$+$i>e<0$NCM$O(B 0 $B$K$J(B $B$i$J$$$3$H$KCm0U(B)$B!#(B $B:G8e$K(B $ x_0$ $B$,(B $ f(x)$ $B$N:,$G$"$k$H$-!"(B$ f(x)$ $B$,=E:,$r;}$?$J$$$H$$$&(B $B2>Dj$+$i(B $ f'(x_0)\ne 0$ $B$G!"(B

$\displaystyle f'(x_0)f_1(x_0)=f'(x_0)^2>0
$

$B$H$J$j!">r7o(B (4) $B$bK~$?$5$l$k!#(B $ \qedsymbol$ ARRAY(0x12f60a8) $ \qedsymbol$


next up previous contents
Next: A.5.3 3$B=EBP3Q9TNs$N8GM-B?9`<0$H(B Strum $BNs(B Up: A.5 Strum $B$NJ}K!(B Previous: A.5.1.0.2 (2) $B$N>ZL@(B
Masashi Katsurada
$BJ?@.(B21$BG/(B7$B7n(B9$BF|(B