next up previous contents
Next: 2.2.3 $BI|=,(B: $B:,$H78?t$N4X78(B Up: 2.2 $BO"N)K!(B, $BFC$K(B Durand-Kerner Previous: 2.2.1 Durand-Kerner $BK!(B

2.2.2 DK $BK!(B -- Durand $B$N2r

$BBe?tJ}Dx<0(B

$\displaystyle p(x)\equiv x^n+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_0=0
$

$B$N:,$r(B $ \xi_1$, $ \cdots$, $ \xi_n$ $B$H$9$k$H(B

$\displaystyle p(x)=(x-\xi_1)\cdots(x-\xi_n),
$

(2.3) $\displaystyle p'(\xi_i)=\prod_{j\ne i}(\xi_{i}-\xi_{j}) =(\xi_i-\xi_1)\cdots(\xi_i-\xi_{i-1}) (\xi_i-\xi_{i+1})\cdots(\xi_i-\xi_{n}).$

Newton $BK!$G$O8=:_$N6a;wCM(B $ x^{(k)}$ $B$+$i $B$r5a$a$k$K$O(B

(2.4) $\displaystyle x^{(k+1)}=x^{(k)}-\frac{p(x^{(k})}{p'(x^{(k)})}$

$B$H$9$k!#$3$3$GF34X?t$N7W;;$r$7$J$$$G:Q$^$;$k$?$a$K!"$3$NJ,Jl$r(B (2.3) $B$GBeMQ$9$k$3$H$r9M$($k!#(B $B$D$^$j(B $ x^{(k)}$ $B$,(B $ \xi_i$ $B$N6a;wCM$@$H9M$($F(B $ p'(x^{(k)})$ $B$r(B $ p'
(\xi_i)$ $B$GCV$-49$($k$o$1$G$"$k!#3F:,(B $ \xi_i$ $B$KBP$9$k(B $B6a;wCM(B $ x_i^{(k)}$ $B$,(B $ i=1$, $ \cdots$, $ n$ $B$K$D$$$FA4It$=$m$C$F$$$k$H$7(B $B$F!"(B(2.4) $B$NBe$o$j$K(B

(2.5) $\displaystyle x_i^{(k+1)}=x_i^{(k)}-\frac{p(x_i^{(k)})} {\dsp\prod_{j\ne i}\left(x_i^{(k)}-x_j^{(k)}\right)}.$

$B$rMQ$$$k!#(B

Durand $B$O(B (2.5) $B$N<}B+@-$r<($7!":G=*E*$K(B $ 2$ $B>h<}B+(B $B$K$J$k$3$H$r>ZL@$7$?!#(B $ \qedsymbol$

$ \xi_1$, $ \cdots$, $ \xi_n$ $B$,$9$Y$FAj0[$J$j!"(B$ x_i^{(k)}$ $B$,(B $ \xi_i$ $B$K==J,6a$$$H$7$F!"(B $ \eps_i^{(k)}:= x_i^{(k)}-\xi_i$ $B$H$*$1$P!"(B

  $\displaystyle \eps_i^{(k+1)}$ $\displaystyle =$ $\displaystyle \eps_i^{(k)}
\left[
1-\frac{\prod_{j\ne i}(x_i^{(k)}-\xi_j)}
{\prod_{j\ne i}(x_i^{(k)}-x_j^{(k)})}
\right]$
    $\displaystyle =$ $\displaystyle \eps_{i}^{(k)}
\left[
1-\prod_{j\ne i}
\left(
1+\frac{\eps_j^{(k)}}{x_i^{(k)}-x_{j}^{(k)}}
\right)
\right]$

$ 2$ $B $ \eps_j^{(k)}\cdot\eps_{\ell}^{(k)}$ $B$rL5;k$9$k$H(B

$\displaystyle \eps_{i}^{(k)}\kinji -\eps_{i}^{(k)}\sum_{j\ne i}\frac{\eps_j^{(k)}}
{x_i^{(k)}-x_j^{(k)}}.
$

$\displaystyle \vert x_i^{(k)}-x_j^{(k)}\vert\ge \frac{1}{C}$   $\displaystyle \mbox{($C$\ $B$O(B $i$, $j$, $k$\ $B$K$h$i$J$$(B)}$

$B$H$9$l$P(B

$\displaystyle \left\vert
\eps_i^{(k+1)}\vert\le C\vert\eps_{i}^{(k)}\cdot\sum_{j\ne i}\vert\eps_j^{(k)}
\right\vert
$

$B$3$l$O(B $ 2$ $B>h<}B+$r0UL#$9$k$,!"$5$i$K>\$7$/$_$k$H(B

\begin{jtheorem}[DK $BK!$N8m:9(B]\upshape
\begin{displaymath}
\vert\mbox{$B<!$N8m:9(B}\...
...$BN8m:%1(B}\vert\times
\vert\mbox{$B%D%;!


\begin{jtheorem}
% latex2html id marker 563
[$B%9%J%=%(!

Proof. ($B!"%9!"%O!"%R%(%O%F%"!"%L!"%^!"%O!"!"!#!W!(B[13] $B$N(B 20 $B$d!"(B $B;3K\!&KL@n(B [17] $B$r;2>H!#(B) $ \qedsymbol$ ARRAY(0x12b7160) $ \qedsymbol$

ARRAY(0x12cbae0)


next up previous contents
Next: 2.2.3 $BI|=,(B: $B:,$H78?t$N4X78(B Up: 2.2 $BO"N)K!(B, $BFC$K(B Durand-Kerner Previous: 2.2.1 Durand-Kerner $BK!(B
Masashi Katsurada
$BJ?@.(B21$BG/(B7$B7n(B9$BF|(B