next up previous
: 教科書 : ouyoukaiseki2-syllabus-2000 : 講義概要

授業計画

第1回
偏微分方程式とは何か、数学と諸科学におけるその役割
第2回
熱方程式の導出と初期値・境界値問題
第3回
適切性の概念、熱方程式の最大値原理
第4回
熱方程式の解の一意性と安定性
第5回
フーリエの方法による熱方程式の解の構成
第6回
フーリエの方法とスペクトル分解
第7回
非同次問題、ノイマン問題
第8回
熱方程式の解の漸近的挙動・定常解、変数変換と無次元化の概念
第9回
ラプラス方程式、ポアソン方程式の例と最大値原理
第10回
円盤におけるラプラス方程式の境界値問題
第11回
変分法、ディリクレの原理、極小曲面
第12回
波動方程式、ダランベールの解、弦の振動
第13回
偏微分方程式の分類、線型問題と非線型問題



Masashi Katsurada 平成12年10月27日