next up previous contents
Next: A.5.1.0.1 (1) $B$N>ZL@(B Up: A.5 Strum $B$NJ}K!(B Previous: A.5 Strum $B$NJ}K!(B

A.5.1 $B%9%D%k%`$NDjM}(B

$Be$N6h4V(B $ [a,b]$ $B$K$*$1$kB?9`<0(B $ f(x)$ $B$N$J(B $BDjM}!#(B

\begin{jdefinition}[Strum$BNs(B]\upshape
$f(x)\in\R[x]$, $[a,b]$\ $B$r(B $\R$\ $B$N6h4V$H(B...
...$BK$*$$$(B$f(x_0)=0$\ $B!

$B!"%&!"%[%HtO}$K$h$C$F!"6h4(B$ [a,b]$ $BFb$KB8:_$9$k(B $ f(x)=0$ $B$N2r$r?t$rCN$k$3(B $B$H$,$G$-$k$,!"FsJ,C5:w$N5;K!$HAH$_9g$o$;$k$3$H$G!"2r$,B8:_$9$k6h4V$r9%$-(B $B$J$@$1>.$5$/$9$k$3$H$,=PMh!"$=$N6h4VFb$NE,Ev$JE@$r2r$N6a;wCM$H$7$F:NMQ$9(B $B$k$H$$$&6a;w2rK!$,$G$-$k!#$3$l$r(BStrum $B$NJ}K!(B$B$H8F$V!#(B


\begin{jdefinition}[$BId9fJQ2=$N2s?t(B]\upshape
$B<B78?tB?9`<0$NNs(B $f(x)=f_0(x)$, $f_...
...$\ $B9`$G(B $1$\ $B2sId9f(B
$BJQ2=$7$?$H?t$($k$3$H$K$9$k!#(B
\end{itemize}\end{jdefinition}


\begin{jexample}
$+$, $+$, $-$, $0$, $+$, $+$, $-$\ $B$G$O(B $3$\ $B2s$H?t$($k!#(B
\end{jexample}


\begin{jtheorem}[Strum]\upshape
$B<B78?tB?9`<0$NNs(B $f(x)=f_0(x)$, $f_1(x)$, $\cdo...
...0(x)=0$\ $B$N6h4V(B $[a,b]$\ $B$K$*$1$k2r$N8D?t$O(B $N(a)-N(b)$\ $B$G$

Proof. $ f(x)=0$ $B$N2r$N8D?t$OM-8B8D$G$"$k!#$=$N$&$A(B $ [a,b]$ $BFb$K$"$k$b$N$rBg$-(B $B$5$N=g$KJB$Y$F(B

$\displaystyle x_1<x_2<\cdots<x_{n}
$

$B$H$9$k!#(B$ n+1$ $B8D$N6h4V(B

$\displaystyle I_0=[a,x_1),\quad I_1=(x_1,x_2), \quad I_2=(x_2,x_3),
\quad I_{n-1}=(x_{n-1},x_n), \quad I_n=(x_n,b]
$

$B$N9gJ;$K$*$$$F(B $ N(x)$ $B$ODj5A$G$-$k!#0J2<$G$O(B
  1. $B3F6h4V(B $ I_j$ $B$K$*$$$F(B $ N(x)$ $B$ODj?t$G$"$k(B:

    $\displaystyle \exists \{n_j\}_{j=0}^{n}$   s.t.$\displaystyle \quad
N(x)=n_j$   $\displaystyle \mbox{($x\in I_j$, $j=0,1,\cdots,n$)}$

  2. $ n_{j+1}-n_j=-1$ ( $ j=0,1,\cdots,n-1$)
$B$G$"$k$3$H$r>ZL@$9$k(B ($B$3$NFs$D$+$iMF0W$K(B $ N(b)-N(a)=n$ $B$,F3$+$l$k(B)$B!#(B

$ \qedsymbol$




next up previous contents
Next: A.5.1.0.1 (1) $B$N>ZL@(B Up: A.5 Strum $B$NJ}K!(B Previous: A.5 Strum $B$NJ}K!(B
Masashi Katsurada
$BJ?@.(B21$BG/(B7$B7n(B9$BF|(B