next up previous contents
Next: 3.4.2.2 以外の時の数値解析 Up: 3.4.2 の値を変えた解析 Previous: 3.4.2 の値を変えた解析

3.4.2.1 $ \lambda =1$のときの解析

(a)$ \lambda =1$の時
$ E_{j+1}$を、解析的に計算してみる。 まず、(2),(3)((5),(6)でも同じ) を用いて、

  $\displaystyle v_{i,j+1}^2 + w_{i,j+1}^2$ $\displaystyle =$ $\displaystyle \frac{1}{4}\{ (v_{i+1,j}+v_{i-1,j})^2
+2\lambda (v_{i+1,j}+v_{i-1,j})(w_{i+1,j}-w_{i-1,j})
+\lambda^2(w_{i+1,j}-w_{i-1,j})^2 \}$
    $\displaystyle +$ $\displaystyle \frac{1}{4}\{ \lambda^2(v_{i+1,j}-v_{i-1,j})^2
+2\lambda (v_{i+1,j}-v_{i-1,j})(w_{i+1,j}+w_{i-1,j})
+(w_{i+1,j}+w_{i-1,j})^2 \}$
    $\displaystyle =$ $\displaystyle \frac{1}{4}\{ (1+\lambda ^2)(v_{i+1,j}^2+v_{i-1,j}^2)
+(1+\lambda^2)(w_{i+1,j}^2+w_{i-1,j}^2) \}$
    $\displaystyle +$ $\displaystyle \frac{1}{4}\{ 2(1-\lambda^2)(v_{i+1,j}v_{i-1,j}+w_{i+1,j}w_{i-1,j})
+4\lambda(v_{i+1,j}w_{i+1,j}-v_{i-1,j}w_{i-1,j}) \}.$

そこで、
  $\displaystyle 4\sum_{i=1}^{N-1}(v_{i,j+1}^2 + w_{i,j+1}^2)$ $\displaystyle =$ $\displaystyle \sum_{i=1}^{N-1}\{ (1+\lambda^2)
(v_{i+1,j}^2+v_{i-1,j}^2+w_{i+1,j}^2+w_{i-1,j}^2) \}$
    $\displaystyle +$ $\displaystyle \sum_{i=1}^{N-1}\{ 2(1-\lambda^2)
(v_{i+1,j}v_{i-1,j}+w_{i+1,j}w_{i-1,j})
+4\lambda(v_{i+1,j}w_{i+1,j}-v_{i-1,j}w_{i-1,j}) \}$
    $\displaystyle =$ $\displaystyle (1+\lambda^2)(v_{0,j}^2+v_{1,j}^2+v_{N-1,j}^2+v_{N,j}^2
+w_{0,j}^2+w_{1,j}^2+w_{N-1,j}^2+w_{N,j}^2)$
    $\displaystyle +$ $\displaystyle 2(1+\lambda^2)\sum_{i=2}^{N-2}(v_{i,j}^2+w_{i,j}^2)
\ \ +2(1-\lambda^2)\sum_{i=1}^{N-1}(v_{i+1,j}v_{i-1,j}+w_{i+1,j}w_{i-1,j})$
    $\displaystyle +$ $\displaystyle 4\lambda(v_{N,j}w_{Nj}+v_{N-1,j}w_{N-1,j}
-v_{1,j}w_{1,j}-v_{0,j}w_{0,j}).$

$ \lambda =1$を代入して、


  $\displaystyle 4\sum_{i=1}^{N-1}(v_{i,j+1}^2 + w_{i,j+1}^2)$ $\displaystyle =$ $\displaystyle 2(v_{0,j}^2+v_{1,j}^2+v_{N-1,j}^2+v_{N,j}^2
+w_{0,j}^2+w_{1,j}^2+w_{N-1,j}^2+w_{N,j}^2)$
    $\displaystyle +$ $\displaystyle 4\sum_{i=2}^{N-2}(v_{i,j}^2+w_{i,j}^2)
+4(v_{N,j}w_{Nj}+v_{N-1,j}w_{N-1,j}
-v_{1,j}w_{1,j}-v_{0,j}w_{0,j})$
    $\displaystyle =$ $\displaystyle 4\left( \frac{1}{2}(v_{0,j}^2+v_{N,j}^2+w_{0,j}^2+w_{N,j}^2
-w_{1,j}^2-w_{N-1,j}^2-w_{1,j}^2-w_{N-1,j}^2) \right)$
    $\displaystyle +$ $\displaystyle 4\left( \sum_{i=1}^{N-1}(v_{i,j}^2+w_{i,j}^2)
+(v_{N,j}w_{Nj}+v_{N-1,j}w_{N-1,j}
-v_{1,j}w_{1,j}-v_{0,j}w_{0,j}) \right)$

より
  $\displaystyle \sum_{i=1}^{N-1}(v_{i,j+1}^2 + w_{i,j+1}^2)$ $\displaystyle =$ $\displaystyle \frac{1}{2}\{ (v_{0,j}^2+v_{N,j}^2+w_{0,j}^2+w_{N,j}^2)
-(w_{1,j}^2+w_{N-1,j}^2+w_{1,j}^2+w_{N-1,j}^2)\}$
    $\displaystyle +$ $\displaystyle \sum_{i=1}^{N-1}(v_{i,j}^2+w_{i,j}^2)
+(v_{N,j}w_{Nj}+v_{N-1,j}w_{N-1,j}
-v_{1,j}w_{1,j}-v_{0,j}w_{0,j})$

$ E_{j+1}$$ E_{j}$差を取り、上の式を代入すると
  $\displaystyle E_{j+1}-E_{j}$ $\displaystyle =$ $\displaystyle \frac{h}{2}\left( \frac{1}{2}(v_{0,j+1}^2+v_{N,j+1}^2
+w_{0,j+1}^2+w_{N,j+1}^2)+\sum_{i=1}^{N-1}(v_{i,j+1}^2+w_{i,j+1}^2)\right)$
    $\displaystyle -$ $\displaystyle \frac{h}{2}\left( \frac{1}{2}(v_{0,j}^2+v_{N,j}^2+w_{0,j}^2+w_{N,j}^2)
+\sum_{i=1}^{N-1}(v_{i,j}^2+w_{i,j}^2) \right)$
       
    $\displaystyle =$ $\displaystyle \frac{h}{2}\left( \frac{1}{2}\{ (v_{0,j}^2+v_{N,j}^2+w_{0,j}^2+w_{N,j}^2)
-(w_{1,j}^2+w_{N-1,j}^2+w_{1,j}^2+w_{N-1,j}^2)\} \right)$
    $\displaystyle +$ $\displaystyle \frac{h}{2}(v_{N,j}w_{Nj}+v_{N-1,j}w_{N-1,j}
-v_{1,j}w_{1,j}-v_{0,j}w_{0,j})$
    $\displaystyle =$ $\displaystyle \frac{h}{4}\left( v_{0,j+1}^2+v_{N,j+1}^2+w_{0,j+1}^2
+w_{N,j+1}^2+2(v_{N,j}w_{Nj}-v_{0,j}w_{0,j}) \right)$
    $\displaystyle -$ $\displaystyle \frac{h}{4}\left( ( v_{1,j}+w_{1,j})^2 + (v_{N-1,j}-w_{N-1,j})^2\right)$

この式に、問題($ A$)の$ \lambda =1$の時の離散化した境界条件を代入すると、
  $\displaystyle E_{j+1}-E_{j}$ $\displaystyle =$ $\displaystyle \frac{h}{4}\left(\ \ 0\ \ +\ \ 0\ \ +w_{0,j+1}^2
+w_{N,j+1}^2+2(0-0) \right)$
    $\displaystyle -$ $\displaystyle \frac{h}{4}\left( ( w_{0,j+1})^2 +(-w_{N,j+1})^2\right)$
  $\displaystyle \noalign{\vskip 0.2cm}$ $\displaystyle =$ $\displaystyle 0.$

また、問題($ B$)の$ \lambda =1$の時離散化した境界条件を代入すると、
  $\displaystyle E_{j+1}-E_{j}$ $\displaystyle =$ $\displaystyle \frac{h}{4}\left( v_{0,j+1}^2+v_{N,j+1}^2+\ \ 0\ \
+\ \ 0\ \ +2(0-0) \right)$
    $\displaystyle -$ $\displaystyle \frac{h}{4}\left( ( v_{0,j+1})^2 +(v_{N,j+1})^2\right)$
  $\displaystyle \noalign{\vskip 0.2cm}$ $\displaystyle =$ $\displaystyle 0.$

また、 $ \dsp\frac{\rd }{\rd x}u(0,t)=0$$ u(1,t)=0$、の時 の$ \lambda =1$の離散化した境界条件を代入すると、
  $\displaystyle E_{j+1}-E_{j}$ $\displaystyle =$ $\displaystyle \frac{h}{4}\left( v_{0,j+1}^2+\ \ 0\ \ +\ \ 0\ \
+w_{N,j+1}^2+2(0-0) \right)$
    $\displaystyle -$ $\displaystyle \frac{h}{4}\left( ( v_{0,j+1})^2 +(-w_{N,j+1})^2\right)$
  $\displaystyle \noalign{\vskip 0.2cm}$ $\displaystyle =$ $\displaystyle 0.$

ゆえに、いずれの場合も$ \lambda =1$の時

$\displaystyle E_{j+1}=E_{j}
$


となり、エネルギー保存則は成り立つ。


next up previous contents
Next: 3.4.2.2 以外の時の数値解析 Up: 3.4.2 の値を変えた解析 Previous: 3.4.2 の値を変えた解析
Masashi Katsurada
平成14年11月29日