next up previous
Next: 5.4.0.1 $B>ZL@(B Up: 5 $B2,K\Bh(B2$B>O$rFI$`(B Previous: 5.3.0.1 $B>ZL@(B

5.4 $B=[4D$NJ]B8(B


\begin{jdefinition}[$B=[4D(B]\upshape
$B6u4VFb$NJD6J@~(B $C$\ $B$,M?$($i$l$?$H$-(B
\begin{d...
...$Bk)(B $C$\ $B$K4X$9$k=[4D$H$h$S!
Stokes $B$NDjM}$K$h$l$P(B

$\displaystyle \mathit{\Gamma}=\int_S \curl \Vector{v}(t,x)\cdot \Vector{n}\D S.
$

$B$?$@$7(B $ S$ $B$O(B $ C$ $B$r6-3&$H$9$k$h$&$J6JLL(B (unique $B$G$O$J$$(B)$B!"(B $ \Vector{n}$ $B$O(B $ S$ $B$NC10LK!@~%Y%/%H%k$G$"$k!#(B

Stokes $B$NDjM}(B
$ U$ $B$O(B $ \R^2$ $B$N3+=89g(B, $ g\colon\overline U\to\R^3$ $B$O(B$ C^2$-$B5i7B?t$D6J(B $BLL(B, $ D$ $B$r6hJ,E*(B $ C^1$-$B5i$N6-3&$r;}$DM-3&NN0h$G(B $ \overline D\subset U$ $B$rK~$?$9!#(B $ f(\overline D=S)$ $B6JLL!"(B$ \rd S$ $B$O(B $ S$ $B$N%A%'%$%s!"(B $ F$ $B$O(B $ S$ $B$r4^$`(B $ \R^3$ $B$N3+=89g(B $ V$ $B$GDj5A$5$l$?(B $ C^1$-$B5i%Y%/%H%k>l!#(B $B$3$N$H$-(B

$\displaystyle \dint_S\rot F\cdot\vec{\D A}=\int_{\rd S}F\cdot{\D s}.
$

($B8~$-$NOC$rFM$C9~$s$@$1$l$I!"? $BN.BN$H$H$b$KF0$/JD6J@~(B $ C$ $B$r9M$($k!#(B $B$3$3$G(B $ C$ $B$,N.BN$H$H$b$KF0$/$H$O!"(B$ C$ $B$,(B

$\displaystyle \frac{\rd \Vector{x}}{\rd t}=(t,s)=\Vector{v}{t,\Vector{x}(t,s)}
$

$B$rK~$?$9%Q%i%a!<%?! $ \Vector{x}(t,s)$ ( $ 0\le s\le 1$) $B$r;}$D$3$H!#(B


\begin{jtheorem}[Kelvin]\upshape
$B30NO$,F/$$$F$$$J$$$J$i$P!

$B!&%"!&v't%#%(B(William Thomson, 1st Baron $B!A(B (1824$B!=(B1907)) $B!T1Q9q$N?t3X helicity $B$H$O(B

$\displaystyle \int_\Omega\Vector{v}\cdot\curl\Vector{v}\Dx=
\int_\Omega\sum_{k=1}^3 v_k\omega_k\Dx
$

$B$GDj5A$5$l$kNL$N$3$H$G$"$k!#(B


\begin{jtheorem}[$B%X%j%7%F%#!<$NJ]B8B'(B, Moffatt (1969)]\upshape
$BNN0h(B $\Omega$\ ..
...$\omega$\ $B!l9g$K$bF1$8<0$,@.N)$9$k!#(B \end{jtheorem}">



next up previous
Next: 5.4.0.1 $B>ZL@(B Up: 5 $B2,K\Bh(B2$B>O$rFI$`(B Previous: 5.3.0.1 $B>ZL@(B
Masashi Katsurada
$BJ?@.(B19$BG/(B12$B7n(B29$BF|(B