next up previous
Next: A..6 $B1~MQ(B1: $B1_HWNN0h$N%i%W%i%7%"%s$N8GM-CMLdBj(B Up: A. Bessel $B4X?tAaJ,$+$j(B Previous: A..4 Bessel $B4X?t$NNmE@(B

A..5 Fourier-Bessel $BE83+(B


\begin{jproposition}[Bessel $B4X?t$ND>8r4X78<0(B]
$\nu\ge -1/2$ $B$H$9$k$H$-!


\begin{jtheorem}[Fourier-Bessel$BE83+(B]
$f\colon (0,c)\to\C$ $B$,O


\begin{jremark}[$BITO


\begin{jtheorem}
$B1_HW(B $\{(x,y);x^2+y^2<1\}$ $B$N40A47O(B
\begin{displaymath}
f(r,...
..._n(\mu_{nj}r)\sin n\theta \D\theta\right) \D r.
\end{displaymath}\end{jtheorem}

Proof. $ r\in(0,1)$ $B$r8GDj$7$F!"(B $ \theta\mapsto f(r,\theta)$ $B$r9M$($k$H!"(B Fourier $B5i?tE83+(B

$\displaystyle f(r,\theta)=\frac{a_0(r)}{2}
+\sum_{n=1}^\infty (a_n(r)\cos n\theta+b_n(r)\sin n\theta),
$

$\displaystyle a_n(r):=\frac{1}{\pi}\int_0^{2\pi}f(r,\theta)\cos n\theta \D\theta,
\quad
b_n(r):=\frac{1}{\pi}\int_0^{2\pi}f(r,\theta)\sin n\theta \D\theta
$

$B$,F@$i$l$k!#(B $ a_n(r)$, $ b_n(r)$ $B$O(B $ (0,1)$ $B>e$N4X?t$@$+$i!"(B Fourier-Bessel $BE83+$,$G$-$k!#(B

$\displaystyle a_n(r)=\sum_{j=1}^\infty A_{nj}J_n(\mu_{nj}r),\quad
A_{nj}:=\frac{2}{J_{n+1}(\mu_{nj})^2}\int_0^1 r a_n(r)J_n(\mu_{nj}r) \D r,
$

$\displaystyle b_n(r)=\sum_{j=1}^\infty B_{nj}J_n(\mu_{nj}r),\quad
B_{nj}:=\frac{2}{J_{n+1}(\mu_{nj})^2}\int_0^1 r b_n(r)J_n(\mu_{nj}r) \D r.
$

$B0J>e$^$H$a$k$HDjM}$rF@$k!#(B $ \qedsymbol$ ARRAY(0xea8ae0) $ \qedsymbol$


\begin{jcorollary}
$B1_HW(B $\{(x,y);x^2+y^2<R^2\}$ $B$N40A47O(B
\begin{displaymath}
...
...(\mu_{nj}r)\sin n\theta \D\theta\right) \D r.
\end{displaymath}\end{jcorollary}


next up previous
Next: A..6 $B1~MQ(B1: $B1_HWNN0h$N%i%W%i%7%"%s$N8GM-CMLdBj(B Up: A. Bessel $B4X?tAaJ,$+$j(B Previous: A..4 Bessel $B4X?t$NNmE@(B
Masashi Katsurada
$BJ?@.(B18$BG/(B11$B7n(B21$BF|(B