横田一郎, 多様体とモース理論, 現代数学社 (1978) から。
(4) |
(5) |
を満たす任意の , に対して、 を
(6) |
/* ./h | graph -b -g 1 | xplot */ #include <math.h> int main() { double h_ab(double, double, double); int i, n; double a, b, x, h; n = 100; a = - 3.0; b = 3.0; h = (b - a) / n; for (i = 0; i <= n; i++) { x = a + i * h; printf("%f %f\n", x, h_ab(x, 2.0, 1.0)); } } double f(double x) { if (x <= 0) return 0; else return exp(- 1.0 / x); } double g(double x) { return f(x) / (f(x) + f(1 - x)); } double h_ab(double x, double a, double b) { return g((x + a) / (a - b)) * g((- x + a) / (a - b)); }
gnuplot> plot [-3:3] [-0.5:1.5] "h.data" with lines gnuplot> set output "h.eps" gnuplot> set term postscript eps color gnuplot> replot