多変数の微分積分学1 演習問題 (Part 2)

かつらだ 話史

2013年5月27日

http://www.math.meiji.ac.jp/~mk/tahensuu1/

これ以前の細かい話 (位相の話が多く、微積分の本題からは外れている) はカットする (その部分を Part 1 と呼ぶことにするが、WWW に置いておくだけで、配布はしない)。Taylorの定理~最後までを Part 3 と呼ぶ (これは準備でき次第配布する)。

多変数関数の極限・連続性

38. 次の各関数が \mathbb{R}^2 で連続であることを示せ (理由を述べよ)。

(1)
$$f(x,y) = x^2 + \sqrt{2}xy + (\log 3)y^2 + \frac{\pi}{4}x + e^5y + 6$$
 (2) $g(x,y) = \exp(3x + 2y + 1)$

(3)
$$h(x,y) = \frac{x^2 + 2x + 3}{x^2 + y^2 + 1}$$
 (4) $\varphi(x,y) = \log(1 + x^2 + y^2)$ (5) $\psi(x,y) = \sin \sqrt[3]{x}$

(6)
$$F(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}$$

解答

- (1) $1, \sqrt{2}, \log 3, \pi/4, e^5, 6 \in \mathbf{R}$ であるので $f(x,y) \in \mathbf{R}[x,y]$ である。ゆえに $f: \mathbf{R}^2 \to \mathbf{R}$ は連続である。
- (2) F(x,y) = 3x + 2y + 1, $G(z) = \exp z$ とおく。 $F(x,y) \in \mathbf{R}[x,y]$ であるから、 $F: \mathbf{R}^2 \ni (x,y) \mapsto F(x,y) \in \mathbf{R}$ は \mathbf{R}^2 全体で連続である。また $G: \mathbf{R} \ni z \mapsto G(z) \in \mathbf{R}$ は連続である。ゆえにそれらの合成である $g = G \circ F: \mathbf{R}^2 \to \mathbf{R}$ は連続である。
- (3) $Q(x,y)=x^2+2x+3, P(x,y)=x^2+y^2+1$ とおくと、 $P(x,y),Q(x,y)\in\mathbf{R}[x,y]$ である。 ゆえに $Q\colon\mathbf{R}^2\to\mathbf{R}$ と $P\colon\mathbf{R}^2\to\mathbf{R}$ は連続である。また $\forall (x,y)\in\mathbf{R}^2$ に対して $P(x,y)\geq 1$ であるから、 $P(x,y)\neq 0$. ゆえに $h=\frac{Q}{P}\colon\mathbf{R}^2\to\mathbf{R}$ は連続である。

 $Q(x) = x^2 + 2x + 3$ として、1変数多項式とするのではないことに注意する。

(4) $f(x,y)=x^2+y^2$ とおくと、 $f(x,y)\in\mathbf{R}[x,y]$ であるから、 $f\colon\mathbf{R}^2\to\mathbf{R}$ は連続である。一方 $f(\mathbf{R}^2)=[0,\infty)$ である。 $g\colon[0,\infty)\to\mathbf{R}$ を $g(z)=\sqrt{z}$ で定めると、g は連続である。ゆえに合成関数 $g\circ f\colon\mathbf{R}^2\to\mathbf{R}$ は連続である。また $h\colon\mathbf{R}^2\ni(x,y)\mapsto 1\in\mathbf{R}$ は定数関数だから連続である。ゆえに $F=h+g\circ f\colon\mathbf{R}^2\ni(x,y)\mapsto 1+\sqrt{x^2+y^2}\in\mathbf{R}$ は連続である。そして $F(\mathbf{R}^2)=[1,\infty)$. 対数関数 $G\colon(0,\infty)\ni z\mapsto\log z\in\mathbf{R}$ は連続である。 $F(\mathbf{R}^2)\subset(0,\infty)$ であるから、Gと F は合成可能で、 $\varphi=G\circ F\colon\mathbf{R}^2\ni(x,y)\mapsto\log(1+\sqrt{x^2+y^2})\in\mathbf{R}$ は連続である

- (5) $f: \mathbf{R}^2 \to \mathbf{R}$ を f(x,y) := x で定めると、f は連続関数である。また $g: \mathbf{R} \ni z \mapsto \sqrt[3]{z} \in \mathbf{R}$ も連続である。 $\psi = q \circ f$ であり、 ψ は連続関数の合成関数であるから連続である。
- (6) $F_1(x,y) = x^3 3xy^2 \in \mathbf{R}, F_2(x,y) = 3x^2y y^3 \in \mathbf{R}$ とおくと、 $F_1(x,y), F_2(x,y) \in \mathbf{R}[x,y]$ であるから、関数 $F_1 \colon \mathbf{R}^2 \to \mathbf{R}$ と $F_2 \colon \mathbf{R}^2 \to \mathbf{R}$ は連続である。ゆえに $F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \colon \mathbf{R}^2 \ni (x,y) \mapsto \begin{pmatrix} x^3 3xy^2 \\ 3x^2y y^3 \end{pmatrix} \in \mathbf{R}^2$ は連続である。 \blacksquare

解説 上の問題と、「f が a で連続であれば $\lim_{x\to a} f(x) = f(a)$ 」(これは定理、あるいは本によっては連続性の定義そのもので、「当たり前」として良い命題)を組み合わせることで、多くの「明らかな極限」が解決する。

39. $\Omega := \{(x,y) \in \mathbf{R}^2; x > 0, y > 0\}, f: \Omega \ni (x,y) \mapsto x^y \in \mathbf{R}$ とするとき、

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y), \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y), \quad \lim_{(x, y) \to (0, 0)} f(x, y)$$

を求めよ。

40. $A \subset \mathbf{R}^n$, $f: A \to \mathbf{R}^m$ と、 $x \in A$ に関する条件 P(x) があるとき、 $A' := \{x \in A; P(x)\}$, $\widetilde{f}: A' \ni x \mapsto f(x) \in \mathbf{R}^m$ とおく $(\widetilde{f} \ \text{t} \ f \ \text{o} \ A' \ \text{への制限写像である})$ 。 $a \in \overline{A'}$ とするとき、

$$\lim_{P(x)\atop x\to a} f(x) = \lim_{\substack{x\in A'\\ x\to a}} f(x) := \lim_{x\to a} \widetilde{f}(x)$$

とおく。このとき、 $\lim_{x\to a}f(x)$ が存在するならば、

$$\lim_{P(x) \atop x \to a} f(x) = \lim_{x \to a} f(x)$$

が成り立つこと (「関数の極限が存在すれば、その制限関数の極限も存在し、極限値は等しい」) を証明せよ。

注 この問題は定義に戻って考えればほとんど明らかである。対偶を用いる場合がしばしば る。なお、片側極限はこの特別な場合である。例えば

$$\lim_{x \to a+0} f(x) = \lim_{\substack{x > a \\ x \to a}} f(x).$$

- 41. $f: \mathbf{R}^2 \to \mathbf{R}^m, \ A \in \mathbf{R}^m, \ \lim_{(x,y) \to (0,0)} \frac{f(x,y)}{x^2 + y^2} = A$ ならば、 $\forall k \in \mathbf{R} \lim_{\substack{y = kx \\ x \to 0}} \frac{f(x,y)}{x^2 + y^2} = A$ であることを示せ。
- **42.** $\Omega \subset \mathbf{R}^n, f \colon \Omega \to \mathbf{R}, a \in \overline{\Omega}$ とするとき、以下の (1), (2), (3) を証明せよ。
- (1) $f(x) = \frac{q(x)}{p(x)}$, $\lim_{x \to a} p(x) = 0$, $\lim_{x \to a} q(x) \neq 0$ (収束しないか、収束しても極限が 0 でない) ならば、 $\lim_{x \to a} f(x)$ は存在しない。
- (2) $\forall x \in \Omega \ f(x) > 0$, $\lim_{x \to a} f(x) = 0$ is if, $\lim_{x \to a} \frac{1}{f(x)} = \infty$.
- (3) $\lim_{x\to a} f(x) = \infty$ ならば、 $\lim_{x\to a} \frac{1}{f(x)} = 0$.

$$(1) \lim_{(x,y)\to(1,2)} (x^2 - y^2). (2) \lim_{(x,y)\to(0,1)} \frac{1 - xy}{x^2 + y^2}. (3) \lim_{(x,y)\to(0,0)} \frac{1}{x^2 + y^2}. (4) \lim_{(x,y)\to(0,0)} \frac{x + y}{\log(x^2 + y^2)}$$

43. つぎの極限値が存在するかどうか調べ、存在する場合はそれを求めよ。 (1)
$$\lim_{(x,y)\to(1,2)}(x^2-y^2)$$
. (2) $\lim_{(x,y)\to(0,1)}\frac{1-xy}{x^2+y^2}$. (3) $\lim_{(x,y)\to(0,0)}\frac{1}{x^2+y^2}$. (4) $\lim_{(x,y)\to(0,0)}\frac{x+y}{\log(x^2+y^2)}$. (5) $\lim_{(x,y)\to(0,0)}\frac{x-y}{x+y}$. (6) $\lim_{(x,y)\to(0,0)}\frac{x}{\sqrt{x^2+y^2}}$. (7) $\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^2+y^2}$. (8) $\lim_{(x,y)\to(0,0)}\frac{\sin(xy)}{xy}$.

解答

(1) $f(x,y) := x^2 - y^2$ は多項式関数なので、 \mathbf{R}^2 全体で連続である。特に (1,2) で連続である から、 $(x,y) \rightarrow (1,2)$ のときの極限は、f(1,2) に等しい:

$$\lim_{(x,y)\to(1,2)} f(x,y) = f(1,2) = 1^2 - 2^2 = 1 - 4 = -3.$$

(2) $f(x,y):=\frac{1-xy}{x^2+y^2}$ は有理関数で、分母が 0 にならない範囲 $\Omega:=\mathbf{R}^2\setminus\{(0,0)\}$ で定義さ れて連続である。 $(0,1)\in\Omega$ で連続であるから、 $(x,y)\to(0,1)$ のときの極限は、f(0,1)に等しい:

$$\lim_{(x,y)\to(0,1)} f(x,y) = f(0,1) = \frac{1-0\cdot 1}{0^2+1^2} = \frac{1-0}{1} = 1.$$

(3) この関数は有理関数で、(0,0) で分母が 0 になることに注意する。 $f: \mathbf{R}^2 \setminus \{(0,0)\} \ni (x,y) \mapsto$ $x^2+y^2\in(0,\infty),\ g\colon(0,\infty)\ni z\mapsto rac{1}{z}\in\mathbf{R}$ について、 $f(\mathbf{R}^2\setminus\{(0,0)\})\subset(0,\infty)$ であるか ら、合成関数 $g\circ f\colon \mathbf{R}^2\setminus\{(0,0)\}\stackrel{\sim}{\to}\mathbf{R}$ が得られる。

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\to(0,0)}} f(x,y) = \lim_{\substack{(x,y)\neq(0,0)\\(x,y)\to(0,0)}} \left(x^2+y^2\right) = 0^2 + 0^2 = 0,$$

$$\lim_{z \to 0} g(z) = \lim_{\substack{z > 0 \\ z \to 0}} \frac{1}{z} = \lim_{z \to +0} \frac{1}{z} = \infty$$

であるから、

$$\lim_{(x,y)\to(0,0)} \frac{1}{x^2+y^2} = \lim_{(x,y)\to(0,0)} g(f(x,y)) = \infty.$$

あるいは、

$$f \colon \mathbf{R}^2 \setminus \{(0,0)\} \ni (x,y) \mapsto \sqrt{x^2 + y^2} \in \mathbf{R}, \quad g \colon \mathbf{R} \setminus \{0\} \ni z \mapsto \frac{1}{z^2} \in \mathbf{R}$$

とするのが良いかもしれない。 $\lim_{(x,y)\to(0,0)}f(x,y)=0,\,\lim_{z\to 0}g(z)=\infty$ であるから、

$$\lim_{(x,y)\to(0,0)} \frac{1}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} g(f(x,y)) = \infty.$$

(4) $(x,y) \rightarrow (0,0)$ のとき、分子 $= x+y \rightarrow 0, x^2+y^2 \rightarrow +0,$ 分母 $= \log(x^2+y^2) \rightarrow -\infty$ で あるから、

$$\lim_{(x,y)\to(0,0)} \frac{x+y}{\log(x^2+y^2)} = 0.$$

(5) いわゆる不定形 $\frac{0}{0}$ である。近づく方向を限定して考えてみると何か分かることがある。 x 軸に沿って近づけた場合

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}}\frac{x-y}{x+y} = \lim_{x\to 0}\frac{x}{x} = \lim_{x\to 0}1 = 1.$$

y 軸に沿って近づけた場合

$$\lim_{\substack{(x,y)\to(0,0)\\x=0}}\frac{x-y}{x+y}=\lim_{y\to 0}\frac{-y}{y}=\lim_{y\to 0}(-1)=-1.$$

これら2つの極限が一致しないので、 $\lim_{(x,y)\to(0,0)}\frac{x-y}{x+y}$ は存在しない。

(6) これも不定形 $\frac{0}{0}$ である。x 軸に沿って近づけた場合

$$\lim_{(x,0)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}} = \lim_{x\to 0} \frac{x}{\sqrt{x^2}} = \lim_{x\to 0} \frac{x}{|x|}.$$

この極限は存在しない (右極限 $\lim_{x\to+0}\frac{x}{|x|}=1$ と左極限 $\lim_{x\to-0}\frac{x}{|x|}=-1$ は一致しない)。 ゆえに $\lim_{(x,y)\to(0,0)}\frac{x}{\sqrt{x^2+y^2}}$ も存在しない。

(7) これも不定形 $\frac{0}{0}$ である。x 軸, y 軸や、y = kx (k は定数) にそっての極限は、すべて 0 であることが分かる。実際例えば

$$\lim_{\stackrel{(x,y)\to(0,0)}{u-kx}}\frac{x^2y^2}{x^2+y^2}=\lim_{x\to 0}\frac{x^2\cdot (kx)^2}{x^2+(kx)^2}=\lim_{x\to 0}\frac{k^2x^2}{1+k^2}=0.$$

これから 0 に収束しそうだと見当をつけて証明を考える。

$$\left| \frac{x^2 y^2}{x^2 + y^2} - 0 \right| = \left| \frac{x^2 y^2}{x^2 + y^2} \right| = x^2 \frac{y^2}{x^2 + y^2} \le x^2 \frac{x^2 + y^2}{x^2 + y^2} = x^2.$$

 $(x,y) \to (0,0)$ のとき右辺は 0 に収束するので (これは極限の定義に戻れば簡単に示せる、あるいは右辺 $x^2=:r(x,y)$ は x と y の多項式なので、r は関数として連続で、 $(x,y) \to (0,0)$ のとき $r(x,y) \to r(0,0)=0$, としても良い)、はさみうちの原理から、

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$$

(8) これも不定形 $\frac{0}{0}$ である。 $f(x,y):=xy,\ g(z):=\frac{\sin z}{z},\ a=(0,0),\ b=0,\ c=1$ とおくと、 $\lim_{(x,y)\to a}f(x,y)=b,\quad \lim_{z\to b}g(z)=c$

であるから、

$$\lim_{(x,y) \to (0,0)} \frac{\sin(xy)}{xy} = \lim_{(x,y) \to a} g(f(x,y)) = \lim_{z \to b} g(z) = c = 1.$$

もう少しきちんと書くと: $A := \{(x,y) \in \mathbf{R}^2; xy \neq 0\}, \ \mathcal{E}$

$$f: A \ni (x,y) \mapsto xy \in \mathbf{R}, \quad g: \mathbf{R} \setminus \{0\} \ni z \mapsto \frac{\sin z}{z} \in \mathbf{R}$$

とおく。 f(x,y) は x と y の多項式であるから、いたるところ連続である。ゆえに $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0$. 一方 (高校で学んだように) $\lim_{z\to 0} g(z) = 1$ である。 $f(A) \subset \mathbf{R} \setminus \{0\}$ であるから、 g と f は合成できて、

$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} = \lim_{(x,y)\to(0,0)} g(f(x,y)) = 1.$$

44. $f(x,y) = \frac{xy^2}{x^2 + y^4}$ は、(x,y) が直線に沿って (0,0) に近づくとき 0 に近づくが、(x,y)が放物線 $y^2=x$ に沿って (0,0) に近づくとき 1/2 に近づくことを示せ (従って、この f は (0,0) において極限値を持たない)。

ヒント 方針に従って計算するだけ。

45.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x+y}$$

46. つぎの関数が原点 (0,0) で連続かどうか調べよ。

46. つぎの関数が原点
$$(0,0)$$
 で連続かどうか調べよ。
$$(1) f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

$$(2) f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

$$(3) f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) \neq (0,0)) \end{cases}$$

$$(4) f(x,y) = \begin{cases} \frac{x+y}{\log(x^2 + y^2)} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) \neq (0,0)) \end{cases}$$

$$(5) f(x,y) = \begin{cases} \frac{xy}{x+y} & (x+y \neq 0) \\ 0 & (x+y = 0). \end{cases}$$

解答(結果のみ) (1) 連続である (2) 連続である (3) 連続でない (4) 連続である (5)連続でない

連続関数 $f: (-1,1) \to \mathbf{R}$ が f(0) > 0 を満たすとする。このとき次の (1),(2) が成り立 つことを示せ。

(1) $\delta > 0$ が存在して

$$f(x) > 0 \quad (|x| < \delta)$$

が成り立つ。

(2) $\varepsilon > 0$, $\delta > 0$ が存在して、

$$f(x) \ge \varepsilon \quad (|x| < \delta)$$

が成り立つ。

(先に(2)を示すことも出来て、そうすれば(1)は明らかである。)

解答 $(1) \varepsilon := f(0)$ とおくと、 $\varepsilon > 0$ であるから、f の 0 での連続性によって、 $\exists \delta > 0$ s.t. $(\forall x \in (-1,1): |x-0| < \delta) |f(x)-f(0)| < \varepsilon$. この不等式は $-\varepsilon < f(x)-f(0) < \varepsilon$ と同値で あるが、 $f(0) = \varepsilon$ より f(x) > 0 が得られる。

連続関数の逆像は開集合、開集合&閉集合の判定

U, V をそれぞれ $\mathbf{R}^n, \mathbf{R}^m$ の開集合、 $f: U \to V$ を連続関数とする。このとき $W \subset V$ なる 任意の開集合 W に対して、 $f^{-1}(W) := \{x \in U; f(x) \in W\}$ は \mathbf{R}^n の開集合となることを証明す ウ であるから、 $\exists \varepsilon > 0 \text{ s.t. } B(f(a); \varepsilon) \subset$ イ (ここで $B(\alpha; r)$ は中心 α 、半径 r の開球 を表す記号). f の連続性から \square $\delta > 0$ s.t. $\|x-a\| < \delta \Longrightarrow x \in U$ かつ $\|f(x)-f(a)\| < \varepsilon$. ゆえに $f(B(a;\delta)) \subset B(f(a);\varepsilon) \subset W$ となるが、これから $B(a;\delta) \subset \square$. ゆえに $f^{-1}(W)$ は開集合である。」

解答 「連続関数による開集合の逆像は開集合である」という一般的になりたつ命題の証明である。何も見ずに証明せよと言われたら簡単ではないかもしれないが、この種の証明を見慣れていればいくつかの部分は(極論すれば考えないでも)分かってしまうであろう。 $(r) f^{-1}(W)$ (1) W (2) 開集合 (1) (1) (1) (1) (1) (2) (3) (3) (4) (4) (5) (5) (7)

- **49.** 任意の連続関数 $f: \mathbf{R}^n \to \mathbf{R}$ に対して、 $\{x \in \mathbf{R}^n; f(x) > 0\}$ は \mathbf{R}^n の開集合であることを用いて、任意の連続関数 $g: \mathbf{R}^n \to \mathbf{R}$ に対して、以下の A, B, C が開集合であること、D, E, F が閉集合であることを示せ。
- (1) $A = \{x \in \mathbf{R}^n; g(x) < 0\}$ (2) $B = \{x \in \mathbf{R}^n; 1 < g(x) < 2\}$ (3) $C = \{x \in \mathbf{R}^n; g(x) \neq 0\}$
- (4) $D = \{x \in \mathbf{R}^n; g(x) \ge 0\}$ (5) $E = \{x \in \mathbf{R}^n; 1 \le g(x) \le 2\}$ (6) $F = \{x \in \mathbf{R}^n; g(x) = 3\}$

解答

- (1) f := -g とおくと、 $A = \{x \in \mathbf{R}^n; f(x) > 0\}.$
- (2) $f_1(x) := g(x) 1$, $f_2(x) := 2 g(x)$ とおくと、 $B = \{x \in \mathbf{R}^n; f_1(x) > 0\} \cap \{x \in \mathbf{R}^n; f_2(x) > 0\}$. 右辺は二つの \mathbf{R}^n の開集合の共通部分なので、 \mathbf{R}^n の開集合である。
- (3) $f_1 := g$, $f_2 := -g$ とおくと、 $C = \{x \in \mathbf{R}^n; f_1(x) > 0\} \cup \{x \in \mathbf{R}^n; f_2(x) > 0\}$. 右辺は二つの \mathbf{R}^n の開集合の合併なので、 \mathbf{R}^n の開集合である。
- (4) $D^c = \{x \in \mathbf{R}^n; g(x) < 0\}$ は (1) から \mathbf{R}^n の開集合である。ゆえに D は \mathbf{R}^n の閉集合である。
- (5) $f_1(x) = 1 g(x)$, $f_2(x) := g(x) 2$ とおくと、 $E^c = \{x \in \mathbf{R}^n; f_1(x) > 0\} \cup \{x \in \mathbf{R}^n; f_2(x) > 0\}$. 右辺は \mathbf{R}^n の開集合の合併であるから、 \mathbf{R}^n の開集合である。ゆえに E は \mathbf{R}^n の閉集合である。
- (6) $\widetilde{g}(x) := g(x) 3$ とおくと、 $F^c = \{x \in \mathbf{R}^n; g(x) \neq 3\} = \{x \in \mathbf{R}^n; \widetilde{g}(x) \neq 0\}$. この右辺は (3) により \mathbf{R}^n の開集合であるから、F は \mathbf{R}^n の閉集合である。 \blacksquare
- **50.** $F \subset \mathbf{R}^n$ で $f: F \to \mathbf{R}$ が連続とする。(1) $\{x \in F; f(x) \ge 0\}$ は \mathbf{R}^n の閉集合とは限らないことを示せ。(2) F が \mathbf{R}^n の閉集合であるとき、 $\{x \in F; f(x) \ge 0\}$ は \mathbf{R}^n の閉集合であることを示せ。

命題 0.1 $f: \mathbb{R}^n \to \mathbb{R}$ が連続のとき、次の (1) \sim (4) が成立する。

- (1) $\forall a \in \mathbf{R}$ に対して、 $A = \{x \in \mathbf{R}^n; f(x) > a\}$ は \mathbf{R}^n の開集合である。
- $(2) \forall b \in \mathbf{R}$ に対して、 $A = \{x \in \mathbf{R}^n; f(x) < b\}$ は \mathbf{R}^n の開集合である。
- (3) $\forall a, b \in \mathbf{R}, a < b$ に対して、 $A = \{x \in \mathbf{R}^n; a < f(x) < b\}$ は \mathbf{R}^n の開集合である。
- (4) $\forall c \in \mathbf{R}$ に対して、 $A = \{x \in \mathbf{R}^n; f(x) \neq c\}$ は \mathbf{R}^n の開集合である。

命題 0.2 $f: \mathbb{R}^n \to \mathbb{R}$ が連続のとき、次の $(1) \sim (4)$ が成立する。

- (1) $\forall a \in \mathbf{R}$ に対して、 $A = \{x \in \mathbf{R}^n; f(x) \geq a\}$ は \mathbf{R}^n の閉集合である。
- (2) $\forall b \in \mathbf{R}$ に対して、 $A = \{x \in \mathbf{R}^n; f(x) \leq b\}$ は \mathbf{R}^n の閉集合である。
- $(3) \forall a,b \in \mathbf{R}, a < b$ に対して、 $A = \{x \in \mathbf{R}^n; a \leq f(x) \leq b\}$ は \mathbf{R}^n の閉集合である。
- (4) $\forall c \in \mathbf{R}$ に対して、 $A = \{x \in \mathbf{R}^n; f(x) = c\}$ は \mathbf{R}^n の閉集合である。

命題 0.3 (1) \emptyset と \mathbf{R}^n は \mathbf{R}^n の開集合である。(2) U_{λ} ($\lambda \in \Lambda$) が \mathbf{R}^n の開集合ならば、 $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ は \mathbf{R}^n の開集合である。(3) U_1 と U_2 が \mathbf{R}^n の開集合ならば、 $U_1 \cap U_2$ は \mathbf{R}^n の開集合である。

命題 0.4 (1) \emptyset と \mathbf{R}^n は \mathbf{R}^n の閉集合である。(2) F_{λ} ($\lambda \in \Lambda$) が \mathbf{R}^n の閉集合ならば、 $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ は \mathbf{R}^n の閉集合である。(3) F_1 と F_2 が \mathbf{R}^n の閉集合ならば、 $F_1 \cup F_2$ は \mathbf{R}^n の閉集合である。

- **51. 命題 0.1~0.4** を用いて、以下の問に答えよ。 $(a, b \in \mathbf{R}, a < b \text{ である})$
- (1) **R** の開区間 (a,b), $(-\infty,b)$, (a,∞) は開集合であることを示せ。
- (2) 区間 [a,b], $(-\infty,b)$, (a,∞) は閉集合であることを示せ。
- **52. 命題 0.1 \sim 0.4** を用いて、以下の問に答えよ。 $(a \in \mathbf{R}^n, r > 0$ である。)
- (1) \mathbf{R}^n の開球 $B(a;r) = \{x \in \mathbf{R}^n; ||x a|| < r\}$ が \mathbf{R}^n の開集合であることを示せ。
- (2) \mathbf{R}^n の閉球 $\overline{B}(a;r) = \{x \in \mathbf{R}^n; ||x-a|| \leq r\}$ が \mathbf{R}^n の閉集合であることを示せ。
- (3) \mathbf{R}^n のシングルトン $\{a\}$ が \mathbf{R}^n の閉集合であることを示せ。
- **53. 命題** $0.1 \sim 0.4$ を用いて、以下の間に答えよ。 \mathbf{R}^2 における次の各集合について、(a) 開集合である場合は証明せよ、(b) 閉集合である場合は証明せよ。
- (1) \emptyset (2) \mathbf{R}^2 (3) $\{(0,0)\}$ (4) $\{(0,0),(1,1)\}$
- (5) $(1,2) \times (3,4)$ (6) $[1,2] \times (3,4)$ (7) $[1,2] \times [3,4]$ (8) $\{(x,y); 5 < x^2 + y^2 < 6\}$
- (9) $(0, \infty) \times (0, \infty)$ (10) $\{(x, y); x^3 \le y \le x^2\}$ (11) $\mathbb{R}^2 \setminus \{(0, 0)\}$.

略解 図を描くのは省略。

- (1) \emptyset は \mathbb{R}^2 の開集合であり、 \mathbb{R}^2 の閉集合でもある。これは**命題 0.3**, **0.4** で済んでいる。
- (2) \mathbf{R}^2 は \mathbf{R}^2 の開集合であり、 \mathbf{R}^2 の閉集合でもある。これは**命題 0.3**, **0.4** で済んでいる。
- (3) $\{(0,0)\}$ は \mathbf{R}^2 の閉集合である。一般に $\forall a \in \mathbf{R}^n$ に対して、 $A = \{a\}$ は \mathbf{R}^n の閉集合である。実際、 $f : \mathbf{R}^n \ni x \mapsto \|x a\|^2 = \sum_{j=1}^n (x_j a_j)^2 \in \mathbf{R}$ は、多項式関数であるから、 \mathbf{R}^n

上の連続関数で、 $A = \{x \in \mathbf{R}^n; f(x) = 0\}$ は **命題 0.2** (4) により \mathbf{R}^n の閉集合である。あるいは、

$$A = \bigcap_{i=1}^{n} F_j, \quad F_j := \{ x \in \mathbf{R}^n; x_j = a_j \}$$

と書き直して、各 F_j が **命題 0.2** (4) により \mathbf{R}^n の閉集合であること、それと **命題 0.4** (2) を使う、ということも出来る。

- (4) $A = \{\vec{x}_1, \dots, \vec{x}_n\}$ は \mathbf{R}^2 の閉集合である。実際、 $A = \bigcup_{j=1}^n F_j, F_j := \{\vec{x}_j\} \ (j=1,\dots,n)$ と表すことが出来、各 F_j は (3) で示したように \mathbf{R}^2 の閉集合で、**命題 0.4** (3) を使えば良い。
- (5) $(0,1) \times (2,3) = U_1 \cap U_2$, $U_1 := \{(x,y) \in \mathbf{R}^2; 0 < x < 1\}$, $U_2 := \{(x,y) \in \mathbf{R}^2; 2 < y < 3\}$. **命題 0.1** (3) を使えば U_1 と U_2 が \mathbf{R}^2 の開集合であることが分かり、**命題 0.3** (3) を使えば A が \mathbf{R}^2 の開集合であることが分かる。
- (6) $[0,1] \times (2,3)$ は \mathbf{R}^2 の開集合でもないし、 \mathbf{R}^2 の閉集合でもない。
- (7) $A = [0,1] \times [2,3]$ は \mathbf{R}^2 の閉集合である。実際 $F_1 := \{(x,y) \in \mathbf{R}^2; 0 \le x \le 1\}$, $F_2 := \{(x,y) \in \mathbf{R}^2; 2 \le y \le 3\}$ とおくと、 $A = F_1 \cap F_2$ で、**命題 0.2** (3) を使えば F_1 と F_2 が \mathbf{R}^2 の閉集合であることが分かるので、**命題 0.4** (2) を使えば A が \mathbf{R}^2 の閉集合であることが分かる。
- (8) $A = \{(x,y) \in \mathbf{R}^2; 1 < x^2 + y^2 < 4\}$ は \mathbf{R}^2 の開集合である。 $f(x,y) := x^2 + y^2$ ($(x,y) \in \mathbf{R}^2$), a = 1, b = 4 とおくと、f(x,y) は x,y の多項式で、 $f \colon \mathbf{R}^2 \to \mathbf{R}$ は連続関数であり、 $A = \{(x,y) \in \mathbf{R}^2; a < f(x,y) < b\}$ と書けるので、**命題 0.1** (3) を使えば A が \mathbf{R}^2 の開集合であることが分かる。
- (9) $A = (0, \infty) \times (0, \infty)$ は \mathbf{R}^2 の開集合である。 $U_1 := \{(x, y) \in \mathbf{R}^2; x > 0\}$, $U_2 := \{(x, y) \in \mathbf{R}^2; y > 0\}$ とおくと、 U_1 と U_2 は **命題 0.1** (1) より \mathbf{R}^2 の開集合である。そして $A = U_1 \cap U_2$ であるから、**命題 0.3** (3) より A は \mathbf{R}^2 の開集合である。
- (10) $A = \{(x,y) \in \mathbf{R}^2; x^3 \le y \le x^2\}$ は \mathbf{R}^2 の閉集合である。 $f_1(x,y) := y x^3, f_2(x,y) := y x^2,$ $F_1 := \{(x,y) \in \mathbf{R}^2; f_1(x,y) \ge 0\}, F_2 := \{(x,y) \in \mathbf{R}^2; f_2(x,y) \le 0\}$ とおくと、 F_1 と F_2 は **命題 0.2** (1), (2) より \mathbf{R}^2 の閉集合である。また $A = F_1 \cap F_2$ であるから、**命題 0.4** (2) より A は \mathbf{R}^2 の閉集合である。
- (11) $A = \mathbf{R}^2 \setminus \{(0,0)\}$ は \mathbf{R}^2 の開集合である。実際、 $f : \mathbf{R}^2 \ni (x,y) \mapsto x^2 + y^2 \in \mathbf{R}$ は連続関数で、 $A = \{(x,y) \in \mathbf{R}^2; f(x,y) > 0\}$ であるから、**命題 0.1** (1) より A は \mathbf{R}^2 の開集合である。■

Rⁿ の有界閉集合上の連続関数, 最大値・最小値の存在

54. K を \mathbf{R}^N の有界閉集合、 $f: K \to \mathbf{R}^m$ を連続とするとき、f(K) は \mathbf{R}^m の有界閉集合であることを示せ。

55. $I=[0,1], \varphi\colon I\to\mathbf{R}^n$ は連続とするとき、 $\varphi(I)=\{\varphi(t); t\in I\}$ は \mathbf{R}^n の閉集合であることを示せ。また I=(0,1) や $I=\mathbf{R}$ とするとき、 $\varphi\colon I\to\mathbf{R}^n$ が連続であっても、 $\varphi(I)$ は閉集合とは限らないことを示せ。

56. 連続関数 $f: [-1,1] \rightarrow \mathbf{R}$ が

$$f(x) \ge 0 \quad (\forall x \in [-1, 1]), \qquad f(0) > 0$$

という性質を満たすとするとき

$$\int_{-1}^{1} f(x) \, dx > 0$$

となることを示せ。

解答 $\varepsilon := f(0)/2$ とおくと、 $\varepsilon > 0$. 連続性から、 $\exists \delta > 0$ s.t. $\forall x \in [-1,1]: |x-0| < \delta |f(x)-f(0)| < \varepsilon$. これから $\delta' := \min\{1,\delta\}$ とおくとき、 $f(x) > f(0) - \varepsilon = 2\varepsilon - \varepsilon = \varepsilon$ $(x \in (-\delta',\delta'))$. ゆえに

$$\int_{-1}^{1} f(x) dx = \int_{-\delta'}^{\delta'} f(x) dx + \int_{\delta' < |x| < 1} f(x) dx \ge \int_{-\delta'}^{\delta'} f(x) dx \ge \int_{-\delta'}^{\delta'} \frac{\varepsilon}{2} dx = \varepsilon \delta' > 0. \blacksquare$$

57. I = [0,1] とする。I 上の連続関数 $f: I \to \mathbf{R}$ がいたるところ f > 0 を満たすとき、

$$(\exists \varepsilon > 0)(\forall x \in I) \quad f(x) \ge \varepsilon$$
 (*)

が成り立つことを示せ。

略解 $\varepsilon := \min\{f(x); x \in [0,1]\}$ とおけば良い。

58. $I \in \mathbb{R}$ の区間とする。I 上の連続関数 $f: I \to \mathbb{R}$ がいたるところ f > 0 を満たすとき、

$$(\exists \varepsilon > 0)(\forall x \in I) \quad f(x) \ge \varepsilon$$

は必ずしも成立しない。I=(0,1] の場合、 $I=[0,\infty)$ の場合のそれぞれに条件を満たさない f の例をあげよ。

略解 $I=[1,\infty)$ の場合 $f(x)=rac{1}{x}$. I=(0,1] の場合 f(x)=x.

59. 曲線 φ : $[0,1] \to \mathbf{R}^N$ の像 $\{\varphi(t); t \in [0,1]\}$ は \mathbf{R}^N の有界閉集合であることを示せ。

解答 [0,1] は \mathbf{R} の有界閉集合であり、 φ : $[0,1] \to \mathbf{R}^n$ は連続関数であるから (曲線は定義より連続関数である)、値域 $\varphi([0,1]) = \{\varphi(t); t \in [0,1]\}$ は \mathbf{R}^n の有界閉集合である。 (同じ仮定のもとで、 $[\varphi([0,1])]$ は閉集合であることを示せ」という問題があって、上と同じ解答で良いわけだが、その証明に [0,1] が有界であることを使うのが初学者には不思議かも知れない。 $[1,\infty)$ のように閉集合ではあるが、有界でない集合を定義域に持つ連続写像 $\varphi:[1,\infty) \to \mathbf{R}^n$ の値域は閉集合とは限らない。反例を探してみよう。)

中間値の定理

60. φ : $[0,1] \to \mathbf{R}^2$ は連続な曲線で、 $\varphi(0) = (0,0), \ \varphi(1) = (1,1)$ とする。この曲線は円 $x^2 + y^2 = 1$ と必ず共有点を持つことを示せ。

解答 $\psi(x,y):=x^2+y^2$ は多項式であるから、 $\psi\colon\mathbf{R}^2\to\in\mathbf{R}$ は連続関数である。合成関数 $f:=\psi\circ\varphi\colon[0,1]\to\mathbf{R}$ は連続で、

$$f(0) = \psi(\varphi(0)) = \psi((0,0)) = 0, \quad f(1) = \psi(\varphi(1)) = \psi((1,1)) = 2$$

であるから、中間値の定理より、 $\exists c \in (0,1)$ s.t. f(c) = 1. $(x_0, y_0) := \varphi(c)$ とおくと、

$$x_0^2 + y_0^2 = \psi(x_0, y_0) = \psi(\varphi(c)) = f(c) = 1$$

であるから、点 (x_0,y_0) は円 $x^2+y^2=1$ と φ の値域の両方に属する。すなわち (x_0,y_0) は円 と曲線との共有点である。 \blacksquare

61. I を \mathbf{R} の有界な閉区間 (つまり a < b なる実数 a, b を用いて I = [a, b] と表される)、 $f: I \to \mathbf{R}$ を連続関数とするとき、f(I) も \mathbf{R} の有界な閉区間であることを示せ。

解答 中間値の定理より「 ${f R}$ の任意の区間 I と、任意の連続関数 $f\colon I\to {f R}$ に対して、f(I) は ${f R}$ の区間である」が証明できる。

一方、I を $\mathbf R$ の有界閉区間とするとき、それは $\mathbf R$ の有界閉集合であるから、連続関数 $f\colon I\to \mathbf R$ による像 f(I) は $\mathbf R$ の有界閉集合である。

区間が有界閉集合であるとき、それは有界閉区間である。■

(発展) 点と集合の距離、集合と集合の距離

(微積分の授業ではここまで扱えないが、後でしばしば必要になり、分類してみると、微積分のこのあたりに置くのが適当、という内容であるが、参考までに紹介しておく。)

62. (点と閉集合の距離) \mathbb{R}^n の閉集合 A と、 $x \in \mathbb{R}^n$ に対して、

$$d(x,A) := \inf_{y \in A} ||x - y||$$

とおく (点xと集合Aとの距離という)。このとき、以下の(1)~(3)を証明せよ。

- (1) 任意の A, x に対して、 $d(x, A) = 0 \iff x \in A$.
- (2) A を任意に固定するとき、 $\mathbf{R}^n \ni x \to d(x,A) \in \mathbf{R}$ は連続関数である。
- (3) A を任意に固定するとき、 $\forall x \in \mathbf{R}^n$, $\exists a \in A \text{ s.t. } d(x,A) = ||x-a||$.

ヒント (2) 実は、任意の $x,y \in \mathbf{R}^n$ に対して、 $|d(x,A) - d(y,A)| \le ||x-y||$ が成り立つ。この不等式を証明しよう。それが出来れば、考えている関数の連続性は明らかである。(3) $R := d(x,A), K := \overline{B}(x;R+1) \cap A$ とおくと (図を描こう)、K は有界閉集合なので (なぜ?)、連続関数 $K \ni y \mapsto ||x-y|| \in \mathbf{R}$ の最小値 ||x-a|| ($a \in A$) が存在する。 $A \setminus \overline{B}(x;R+1)$ 上の任意の点 y において、||x-y|| > R+1 に注意すると、 $||x-a|| = \min_{y \in A} ||x-y|| = d(x,A)$ が成り立つ (なぜ?)。

63. (閉集合と閉集合の距離) \mathbf{R}^n 内の閉集合 A, B に対して、

$$d(A,B) := \inf_{x \in A, y \in B} ||x - y|| \quad (= \inf \{||x - y||; x \in A, y \in B\})$$

とおくとき、以下の(1),(2)に答えよ。

- (1) $A \cap B \neq \emptyset \Longrightarrow d(A,B) = 0$ は明らかであるが、逆は必ずしも真でないことを示せ。
- (2) A または B の一方が有界閉集合であれば、「逆」 $d(A,B)=0 \Longrightarrow A\cap B \neq \emptyset$ が成立することを示せ。

ヒント (1) いわゆる反例探しをすればよい。具体的な例を1つだけ見つければ十分。次の (2) を見ると、A も B も有界でないような場合を探す必要があることが分かる。

多変数関数のグラフ

64. 次の関数のグラフ z = f(x, y) の概形を描け。

(0)
$$f(x,y) = x^2 + y^2 (x^2 + y^2 \le 2)$$

(1)
$$f(x,y) = 1 - x - y \ (x \ge 0, y \ge 0)$$

(2)
$$f(x,y) = -x^2 (-\infty < x < \infty, y \le 0)$$

(3)
$$f(x,y) = \sqrt{1-x^2} (-1 < x < 1, y \le 0)$$

(4)
$$f(x,y) = \sqrt{x^2 + y^2} (x^2 + y^2 \le 2)$$

(5)
$$f(x,y) = x^2 - y^2 (-1 < x < 1, -1 < y < 1)$$

ヒント 平面 y=c との交わりは、xz 平面内の曲線 z=f(x,c) で、これは1変数関数のグラフなので考えやすい。それが c を変えたときどうなるか調べると様子が分かる。同じことを平面 x=c との交わりでやってみる。などなど。

偏微分

65. つぎの関数の 1 階偏導関数をすべて求めよ。(1)
$$5x^2 + 8xy^2 + y^3$$
 (2) $\frac{xy}{x+y}$ (3) $\frac{1}{\sqrt{x} - \sqrt{y}}$ (4) $\log \frac{x+y}{x-y}$ (5) $y \sin x + \cos(x-y)$ (6) $\sin(\cos(x+y))$ (7) xye^{x+2y} (8) a^{xy} (a は正の定数) (9) $\sin(xy)$ (10) $\cos(x^2+y)$ (11) $\cos(x^3+xy)$ (12) $\tan^{-1}(x^2-2xy)$ (13) $\tan^{-1}\frac{y}{x}$ (14) $\log \frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}$ (15) $\cos^{-1}\frac{1-xy}{\sqrt{1+x^2+y^2+x^2y^2}}$ (16) $\log \sqrt{\frac{x+y}{x-y}}$ (17) $\log \frac{1}{\sqrt{x^2+y^2}}$

解答 (結果のみ) (1)
$$f_x = 10x + 8y^2$$
, $f_y = 16xy + 3y^2$ (2) $f_x = \frac{y^2}{(x+y)^2}$, $f_y = \frac{x^2}{(x+y)^2}$

(3)
$$f_x = -\frac{1}{2\sqrt{x}(\sqrt{x} - \sqrt{y})^2}$$
, $f_y = -\frac{1}{2\sqrt{y}(\sqrt{x} - \sqrt{y})^2}$ (4) $f_x = -\frac{2y}{x^2 - y^2}$, $f_y = \frac{2x}{x^2 - y^2}$

- (5) $f_x = y \cos x \sin(x y)$, $f_y = \sin x + \sin(x y)$ (6) $f_x = f_y = -\sin(x + y)\cos(\cos(x + y))$
- (7) $f_x = y(1+x)e^{x+2y}$, $f_y = x(1+2y)e^{x+2y}$ (8) $f_x = (y\log a)a^{xy}$, $f_y = (x\log a)a^{xy}$
- (9) $f_x = y\cos(xy)$, $f_y = x\cos(xy)$ (10) $f_x = -2x\sin(x^2 + y)$, $f_y = -\sin(x^2 + y)$

(11)
$$f_x = -(3x^2 + y)\sin(x^3 + xy), f_y = -x\sin(x^3 + xy)$$
 (12) $f_x = \frac{2(x-y)}{1 + (x^2 - 2xy)^2}, f_y = \frac{2(x-y)}{1 + (x^2 - 2xy)^2}$

$$-\frac{2x}{1+(x^2-2xy)} (13) f_x = -\frac{y}{x^2+y^2}, f_y = \frac{x}{x^2+y^2} (14) f_x = \frac{2}{\sqrt{x^2-y^2}}, f_y = -\frac{2x}{y\sqrt{x^2-y^2}}$$

(15)
$$f_x = \frac{1}{1+x^2}$$
, $f_y = \frac{1}{1+y^2}$ (16) $f_x = -\frac{y}{x^2-y^2}$, $f_y = \frac{x}{x^2-y^2}$ (17) $f_x = -\frac{x}{x^2+y^2}$, $f_y = -\frac{y}{x^2+y^2}$

66. 次の関数の 1 階偏導関数を求めよ。(1)
$$xyz$$
 (2) e^{xyz} (3) $\log(x^2+y^2+z^2)$ (4) $\sin(xyz)$

(5)
$$a^{xyz}$$
, $a > 0$ (6) $\sin(x + y + z) + \cos z$ (7) $x \cos y + \sin^{-1} z$ (8) \sqrt{xyz} (9) $e^{\sin(xyz)}$ (10)

$$e^{\cos(xyz)}$$
 (11) $\tan\left(\frac{y}{z} + \frac{z}{x} + \frac{x}{y}\right)$ (12) $x\cos^{-1}(y - 3z) + \sin^{-1}(xy)$ (13) $\sin(xy) + \cos(zx)$

$$(14) x^{2} \sin^{-1}(yz) \quad (15) \tan^{-1} \frac{xy}{z} \quad (16) e^{xy} \cos(xyz) \quad (17) \log \frac{x}{\sqrt{y^{2} + z^{2}}} \quad (18) \log \sqrt{x^{2} + y^{2}} + \frac{1}{\sqrt{y^{2} + z^{2}}} \quad (18) \log \sqrt{x^{2} + y^{2}} + \frac{1}{\sqrt{y^{2} + z^{2}}} \quad (18) \log \sqrt{x^{2} + y^{2}} + \frac{1}{\sqrt{y^{2} + z^{2}}} = \frac{1}{\sqrt{y^{2} + z^{2}}} \quad (18) \log \sqrt{x^{2} + y^{2}} + \frac{1}{\sqrt{y^{2} + z^{2}}} = \frac{1}{\sqrt{y^{2} +$$

$$\sqrt{y^2 + z^2} - \frac{xy}{z}$$

解答 (結果のみ) (1)
$$f_x = yz$$
, $f_y = zx$, $f_z = xy$ (2) $f_x = yze^{xyz}$, $f_y = zxe^{xyz}$, $f_z = xye^{xyz}$ (3) $f_x = \frac{2x}{x^2 + y^2 + z^2}$, $f_y = \frac{2y}{x^2 + y^2 + z^2}$, $f_z = \frac{2z}{x^2 + y^2 + z^2}$ (4) $f_x = yz\cos(xyz)$, $f_y = zx\cos(xyz)$, $f_y = zx\cos(xyz)$, $f_z = xy\cos(xyz)$ (5) $f_x = (\log a)yza^{xyz}$, $f_y = (\log a)zxa^{xyz}$, $f_z = (\log a)xya^{xyz}$ (6) $f_x = \cos(x + y + z)$, $f_y = \cos(x + y + z)$, $f_z = \cos(x + y + z) - \sin z$ (7) $f_x = \cos y$, $f_y = -x\sin y$, $f_z = \frac{1}{\sqrt{1 - z^2}}$ (8) $f_x = \frac{\sqrt{yz}}{2\sqrt{x}}$, $f_y = \frac{\sqrt{xz}}{2\sqrt{y}}$, $f_z = \frac{\sqrt{xy}}{2\sqrt{z}}$ (9) $f_x = yz\cos(xyz)e^{\sin(xyz)}$, $f_y = zx\cos(xyz)e^{\sin(xyz)}$, $f_z = xy\cos(xyz)e^{\sin(xyz)}$ (10) $f_x = -yz\sin(xyz)e^{\cos(xyz)}$, $f_y = -zx\sin(xyz)e^{\cos(xyz)}$, $f_z = -xy\sin(xyz)e^{\cos(xyz)}$ (11) $f_x = \left(\frac{1}{y} - \frac{z}{x^2}\right)\sec^2\left(\frac{y}{z} + \frac{z}{x} + \frac{x}{y}\right)$, $f_y = \left(\frac{1}{z} - \frac{x}{y^2}\right)\sec^2\left(\frac{y}{z} + \frac{z}{x} + \frac{x}{y}\right)$, $f_z = \left(\frac{1}{x} - \frac{y}{z^2}\right)\sec^2\left(\frac{y}{z} + \frac{z}{x} + \frac{x}{y}\right)$ (12) $f_x = \cos^{-1}(y - 3x) + \frac{y}{\sqrt{1 - x^2y^2}}$, $f_y = -\frac{x}{\sqrt{1 - (y - 3x)^2}} + \frac{x}{\sqrt{1 - x^2y^2}}$, $f_z = \frac{3z}{\sqrt{1 - (y - 3z)^2}}$ (13) $f_x = y\cos(xy) - z\sin(xy)$, $f_y = x\cos(xy)$, $f_z = -x\sin(zx)$ (14) $f_x = 2x\sin^{-1}(yz)$, $f_y = \frac{x^2z}{\sqrt{1 - y^2z^2}}$, $f_z = \frac{x^2y}{\sqrt{1 - y^2z^2}}$ (15) $f_x = \frac{yz}{z^2 + x^2y^2}$, $f_y = \frac{zx}{z^2 + x^2y^2}$, $f_z = -\frac{xy}{z^2 + x^2y^2}$ (16) $f_x = ye^{xy}\cos(xyz) - yze^{xy}\sin(xy(z))$, $f_y = xe^{xy}\cos(xyz) - zxe^{xy}\sin(xyz)$, $f_z = -xye^{xy}\sin(xyz)$ (17) $f_x = \frac{1}{x}$, $f_y = -\frac{y}{y^2 + z^2}$, $f_z = -\frac{z}{y^2 + z^2}$ (18) $f_x = \frac{x}{x^2 + y^2} - \frac{y}{z}$, $f_y = \frac{y}{x^2 + y^2} + \frac{y}{y^2 + z^2} - \frac{x}{z}$, $f_z = \frac{z}{\sqrt{y^2 + z^2}} + \frac{zy}{z^2}$

67. $f(x,y) := y^2 + \tan\left(ye^{\frac{1}{x}}\right)$ とするとき、次式を示せ。

$$x^2 \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 2y^2.$$

68. $f(x,y) := x \sin\left(\frac{x}{y}\right) + 2y \cos\left(\frac{y}{x}\right)$ とするとき、次式を示せ。

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = f.$$

69. $f(x,y,z) := x^3 + y^3 + z^3 - 3xyz$ とするとき、次式を示せ。

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = 3f.$$

70. $f(x,y) = \sqrt{x^2 + y^2}$ $((x,y) \in \mathbf{R}^2)$ は原点で偏微分不可能であることを示せ。

解答

$$\frac{f(0+h,0)-f(0,0)}{h} = \frac{\sqrt{h^2+0^2}-\sqrt{0^2+0^2}}{h} = \frac{\sqrt{h^2}}{h} = \frac{|h|}{h} = \begin{cases} 1 & (h>0)\\ -1 & (h<0) \end{cases}$$

であるから、

$$\lim_{h \to +0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to +0} 1 = 1, \quad \lim_{h \to -0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to -0} (-1) = -1.$$

ゆえに $\lim_{h\to 0} \frac{f(0+h,0)-f(0,0)}{h}$ は存在しない。すなわち f は (0,0) で x について偏微分可能ではない。同様にして f は (0,0) で y について偏微分可能ではないことも証明できる。

71. 関数 $f: \mathbf{R}^2 \ni (x,y) \mapsto f(x,y) \in \mathbf{R}$ が、変数 x についていたるところ偏微分可能で、 $f_x(x,y) = 0$ $((x,y) \in \mathbf{R}^2)$ を満たすとする。このとき $\exists g: \mathbf{R} \to \mathbf{R}$ s.t.

$$f(x,y) = g(y) \quad ((x,y) \in \mathbf{R}^2)$$

が成り立つことを示せ。

72. Ω を \mathbf{R}^2 の領域、 $f \in C^1(\Omega)$, $f_x \equiv 0$ $(\Omega$ 内) とするとき、f(x,y) = g(y) $((x,y) \in \Omega)$ を満たす関数 g は必ず存在すると結論して良いか? (成立するならば証明し、そうでなければ反例を与えよ。)

解答 成立しない。 $\Omega = \mathbf{R}^2 \setminus \{(0,y); y \geq 0\}$ として、 $f \colon \Omega \to \mathbf{R}$ を

$$f(x,y) := \begin{cases} 0 & (y < 0) \\ y^2 & (y \ge 0 \text{ かつ } x < 0) \\ y^3 & (y \ge 0 \text{ かつ } x > 0) \end{cases}$$

で定めると、これが反例になる。■

全微分

応用上 C^1 級の関数が出て来る場合が多い (C^1 級ならば全微分可能であることに注意)。 C^1 級であることを確認するには、すべての偏導関数を求めて、それらが連続であることを確認すれば良い。

73. 次の関数の微分を求めよ。 (1) $f(x,y,z) = \tan^{-1}(x+y+z)$ (2) $f(x,y) = \begin{pmatrix} xy \\ x^2+y^3 \end{pmatrix}$

(3)
$$f(x,y,z) = \begin{pmatrix} x+y+z \\ (x+y)e^z \\ (y+z)\sin x \end{pmatrix}$$
 (4) $f(x,y,z) = \frac{1}{\sqrt{x^2+y^2+z^2}}$

解答

(1) a を定数とするとき、

$$\frac{d}{dx}\left(\tan^{-1}(x+a)\right) = \frac{1}{1+(x+a)^2} \cdot \frac{d}{dx}(x+a) = \frac{1}{1+(x+a)^2}$$

であるから、

$$\frac{\partial f}{\partial x} = \frac{1}{1+(x+(y+z))^2}, \quad \frac{\partial f}{\partial y} = \frac{1}{1+(y+(z+x))^2}, \quad \frac{\partial f}{\partial z} = \frac{1}{1+(z+(x+y))^2}.$$

ゆえに

$$f'(x,y,z) = \left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial z}\right) = \left(\frac{1}{1 + (x+y+z)^2} \frac{1}{1 + (x+y+z)^2} \frac{1}{1 + (x+y+z)^2}\right).$$

(2) $f_1(x,y) := xy, f_2(x,y) := x^2 + y^3$ とおくとぎ、

$$f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}, \quad \frac{\partial f_1}{\partial x} = y, \quad \frac{\partial f_1}{\partial y} = x, \quad \frac{\partial f_2}{\partial x} = 2x, \quad \frac{\partial f_2}{\partial y} = 3y^2$$

であるから、

$$f'(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} y & x \\ 2x & 3y^2 \end{pmatrix}.$$

(3) $f_1(x,y,z) := x + y + z$, $f_2(x,y,z) := (x+y)e^z$, $f_3(x,y,z) := (y+z)\sin x$, $f := \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}$ と おくとき、

$$\frac{\partial f_1}{\partial x} = 1, \quad \frac{\partial f_1}{\partial y} = 1, \quad \frac{\partial f_1}{\partial z} = 1,$$

$$\frac{\partial f_2}{\partial x} = e^z, \quad \frac{\partial f_2}{\partial y} = e^z, \quad \frac{\partial f_2}{\partial z} = (x+y)e^z,$$

$$\frac{\partial f_3}{\partial x} = (y+z)\cos x, \quad \frac{\partial f_3}{\partial y} = \sin x, \quad \frac{\partial f_3}{\partial z} = \sin x$$

であるから

$$f'(x,y,z) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ e^z & e^z & (x+y)e^z \\ (y+z)\cos x & \sin x & \sin x \end{pmatrix}. \blacksquare$$

次の関数のヤコビ行列を求めよ。

$$(1) F(x,y) = \begin{pmatrix} xye^{x+2y} \\ \tan^{-1}(x^2 - 2xy) \end{pmatrix} \quad (2) F(x,y) = \begin{pmatrix} \tan^{-1}\frac{x}{y} \\ x \end{pmatrix} \quad (3) F(x,y) = \begin{pmatrix} \log\frac{x+y}{x-y} \\ \log\sqrt{\frac{x+y}{x-y}} \end{pmatrix}$$

(4)
$$F(x,y) = \begin{pmatrix} e^{x+y} \\ e^{x^2+y^2} \end{pmatrix}$$
 (5) $F(x,y) = \begin{pmatrix} \cos(x^2+y) \\ \cos(x^3+2xy) \end{pmatrix}$ (6) $F(x,y) = \begin{pmatrix} e^{xy} \\ \sin(xy) \end{pmatrix}$

解答 (結果のみ) (1)
$$\begin{pmatrix} (x+1)ye^{x+2y} & x(1+2y)e^{x+2y} \\ 2(x-y) & -2x \\ 1+x^2(x-2y)^2 & 1+x^2(x-2y)^2 \end{pmatrix}$$
 (2)
$$\begin{pmatrix} \frac{y}{x^2+y^2} & -\frac{x}{x^2+y^2} \\ 1 & 0 \end{pmatrix}$$

(3)
$$\begin{pmatrix} \frac{-2y}{x^2 - y^2} & \frac{2x}{x^2 - y^2} \\ \frac{-y}{x^2 - y^2} & \frac{x}{x^2 - y^2} \end{pmatrix}$$
 (4)
$$\begin{pmatrix} e^{x+y} & e^{x+y} \\ 2xe^{x^2+y^2} & 2ye^{x^2+y^2} \end{pmatrix}$$

$$\left(\frac{1}{x^{2}-y^{2}} - \frac{1}{x^{2}-y^{2}}\right) \left(\frac{1}{x^{2}-y^{2}}\right) \left(\frac{1}{x^{2}-y^{2}}\right) \left(\frac{1}{x^{2}-y^{2}} - \frac{1}{x^{2}-y^{2}}\right) \left(\frac{1}{x^{2}-y^{2}} - \frac{1$$

(7)
$$\begin{cases} y \cosh(xy) & x \cosh(xy) \\ y \sinh(xy) & x \sinh(xy) \end{cases}$$

75. 次の関数のヤヨピ行列を求めよ。
$$(1) F(x,y,z) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$(2) F(x,y,z) = \begin{pmatrix} yz^2 \\ zx^2 \\ xy^2 \end{pmatrix}$$

$$(3) F(x,y,z) = \begin{pmatrix} \frac{1}{2}(x^2 - y^2) \\ xy \cos z \\ xy \sin z \end{pmatrix}$$

$$(4) F(r,\theta,\phi) = \begin{pmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \theta \end{pmatrix}$$

(4)
$$F(r, \theta, \phi) = \begin{pmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \theta \end{pmatrix}$$

解答 (結果のみ) (1)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (2) $\begin{pmatrix} 0 & z^2 & 2yz \\ 2xz & 0 & x^2 \\ y^2 & 2xy & 0 \end{pmatrix}$ (3) $\begin{pmatrix} x & -y & 0 \\ y\cos z & x\cos z & -xy\sin z \\ y\sin z & x\sin z & xy\cos z \end{pmatrix}$

76. \mathbf{R}^n の開集合 Ω で定義された $f:\Omega\to\mathbf{R}^n, g:\Omega\to\mathbf{R}^n$ に対して、F(x)=(f(x),g(x))で $F: \Omega \to \mathbf{R}$ を定義するとき、F'(x) を求めよ。

解答 (結果のみ)

$$F'(x) = g(x)^T f'(x) + f(x)^T g'(x).$$

- 77. (これはテキストの例だが、自力で解けるようにしておくこと)
- (1) $m \times n$ 行列 $A = (a_{ij}), m$ 次元ベクトル $b = (b_i)$ があるとき、 $f: \mathbf{R}^n \to \mathbf{R}^m$ を f(x) = Ax + bと定める。このとき f の Jacobi 行列を計算で求めよ。
- (2) A を n 次実対称行列、 $b \in \mathbf{R}^n$, $c \in \mathbf{R}$ として、 $f: \mathbf{R}^n \to \mathbf{R}$ を $f(x) = \frac{1}{2}(Ax, x) + (b, x) + c$ で定める。この時 $\nabla f(x)$ を求めよ。

結果のみ (1) f'(x) = A (2) $\nabla f(x) = Ax + b$

合成関数

78. 次の合成関数について、() 内のものを求めよ。 (1)
$$f(x,y)=x\sin\frac{x}{y},\,x=1+3t,\,y=\sqrt{1+t^2}.$$
 $\left(\frac{df}{dt}\right).$

(2)
$$f(x,y) = x^2 y^5 + e^{xy}, x = t, y = \frac{1}{1+t^2}.$$
 $\left(\frac{df}{dt}\right).$

(3)
$$f(x,y) = \frac{x^2 - y}{x^2 + y}$$
, $x = t$, $y = 2t - 3$. $\left(\frac{df}{dt}\right)$.

(4)
$$f(x,y) = x^2 + 2xy$$
, $x = r\cos\theta$, $y = r\sin\theta$. (f_r, f_θ) .

(4)
$$f(x,y) = x^2 + 2xy$$
, $x = r\cos\theta$, $y = r\sin\theta$. (f_r, f_θ) .
(5) $f(x,y) = \frac{x+y}{1-xy}$, $x = \sin 2t$, $y = \cos(3t-s)$. (f_t, f_s) .

(6)
$$f(x,y) = x^2 + xy - y^2$$
, $x = t + 2s$, $y = s - 3t$. (f_t, f_s) .

(7)
$$f(x,y,z) = x^3 + 3xyz - y^2z$$
, $x = 2t + s$, $y = -t - s$, $z = t^2 + s^2$. (f_t, f_s) .

(8)
$$f(x,y,z) = \frac{x-y}{1+xyz}$$
, $x = 3t+2s$, $y = 3s-4t$, $z = t$. (f_t, f_s) .

(9)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
, $x = t \cos s$, $y = t \sin s$, $z = ts$. (f_t, f_s) .

(10)
$$f(x, y, z) = x^2 + xy - y^2$$
, $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$. $(f_r, f_\theta, f_\varphi)$.

答(結果のみ) (1)
$$3\sin\frac{1+3t}{\sqrt{1+t^2}} + \frac{1}{\sqrt{1+t^2}}\left(3+9t-\frac{t(1+3t)^2}{1+t^2}\right)\cos\frac{1+3t}{\sqrt{1+t^2}}$$
 (2) $\frac{2t(1-4t^2)}{(1+t^2)^6} + \frac{1-t^2}{(1+t^2)^2}\,e^{\frac{t}{1+t^2}}$ (3) $\frac{4t(t-3)}{(t^2+2t-3)^2}$

(2)
$$\frac{2t(1-4t^2)}{(1+t^2)^6} + \frac{1-t^2}{(1+t^2)^2} e^{\frac{t}{1+t^2}}$$
 (3) $\frac{4t(t-3)}{(t^2+2t-3)^2}$

$$(4) f_r(t,\theta) = 2r\cos\theta (2\sin\theta + \cos\theta), f_{\theta}(r,\theta) = 2r^2 (\cos^2\theta - \sin^2\theta - \cos\theta\sin\theta)$$

(5)
$$f_t(s,t) = \frac{2(1+\cos^2(3t-s))\cos 2t - 3(1+\sin^2 2t)\sin(3t-s)}{(1-\sin 2t\cos(3t-s))^2}$$

(5)
$$f_t(s,t) = \frac{2(1+\cos^2(3t-s))\cos 2t - 3(1+\sin^2 2t)\sin (3t-s)}{(1-\sin 2t\cos (3t-s))^2},$$

 $f_s(s,t) = \frac{(1+\sin^2 2t)\sin (3t-s)}{(1-\sin 2t\cos (3t-s))^2}$ (6) $f_t(s,t) = 5s - 22t, f_s(s,t) = 5t + 10s$

$$(7) f_t(s,t) = 6 (2t+s)^2 - 28t^3 - 33t^2s - 22ts^2 - 11s^3, f_s(s,t) = 3 (2t+s)^2 - 11t^3 - 22t^2s - 33ts^2 - 16s^3$$

$$(8) f_t(s,t) = \frac{7 + 168t^3 - 43t^2s + 2ts^2 + 6s^3}{(1 - t(12t^2 - ts - 6s^2))^2}, f_s(s,t) = \frac{-1 + t(5t^2 - 84ts + 6s^2)}{(1 - t(12t^2 - ts - 6s^2))^2}$$

$$(9) \ f_t(s,t) = \pm \sqrt{1+s^2} \ (t>0 \ \mathcal{O} \ \xi \ \ +, \ t<0 \ \mathcal{O} \ \xi \ \ \ -), \ f_s(s,t) = \frac{|t|s}{\sqrt{1+s^2}}$$

(10)
$$f_r(r, \theta, \phi) = 2r \sin^2 \theta \left(\cos \phi - \cos \phi \sin \phi - \sin^2 \phi\right),$$

$$f_{\theta}(r,\theta,\phi) = 2r^2 \cos \theta \sin \theta \left(\cos^2 \phi + \cos \phi \sin \phi - \sin^2 \phi\right),$$

$$f_{\phi}(r,\theta,\phi) = r^2 \sin^2 \theta \left(\cos^2 \phi - 4\cos \phi \sin \phi - \sin^2 \phi\right)$$

2 次元の極座標変換を考える。 つまり $x = r\cos\theta$, $y = r\sin\theta$ $(r \ge 0, \theta \in \mathbf{R})$ とすると き、以下の問に答えよ。

- (1) 以下のものを求めよ。
 - (a) $x_r, x_\theta, y_r, y_\theta$
 - (b) r_x , r_y , θ_x , θ_y

(c)
$$\begin{pmatrix} x \\ y \end{pmatrix} = \varphi(r,\theta)$$
 とするとき、 $\varphi'(r,\theta), (\varphi^{-1})'(x,y)$

(2) C^2 級の関数 f = f(x,y) が与えられているとき、 $g(r,\theta) = f \circ \varphi(r,\theta) = f(r\cos\theta,r\sin\theta)$ で、関数 g を定める。このとき、 $f_{xx} + f_{yy} = g_{rr} + \frac{1}{r}g_r + \frac{1}{r^2}g_{\theta\theta}$ が成り立つことを確かめよ。

(http://www.math.meiji.ac.jp/~mk/lecture/tahensuu1-2010/tahensuu1-2010.pdf) の付録 C.3 (pp. 155-159) を見よ。

高階導関数

80. 次の式によって定められる関数 f について f_{xx} , f_{xy} , f_{yy} を求めよ。

(1)
$$e^{xy}$$
 (2) $\sin(x^2 + 5y^3)$ (3) $\cosh(xy)$ (4) $f(x,y) = \frac{y}{x}$ (5) $f(x,y) = \log(x^2 + y^2)$

解答 (結果のみ) (1) y^2e^{xy} , $(1+xy)e^{xy}$, x^2e^{xy}

 $(2) 2 (\cos(x^{2} + 5y^{3}) - 2x^{2} \sin(x^{2} + 5y^{3})), -30xy^{2} \sin(x^{2} + 5y^{3}), 30y \cos(x^{2} + 5y^{3}) -225y^{4} \sin(x^{2} + 5y^{3})) (3) y^{2} \cosh(xy), xy \cosh(xy) + \sinh(xy), x^{2} \cosh(xy) (4) \frac{2y}{x^{3}}, -\frac{1}{x^{2}}, 0 (5) -\frac{2(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}, -\frac{4xy}{(x^{2} + y^{2})^{2}}, \frac{2(x^{2} - y^{2})}{(x^{2} + y^{2})^{2}}$

81. 次の式によって定められる関数 f について、 f_{xx} , f_{xy} , f_{yy} を求めよ。 (1) $x^4 + 4x^2y^3 + 7xy + 1$ (2) $\sin x \cos y$ (3) $\sinh(xy)$ (4) $\cosh(xy)$ (5) e^{xy} (6) e^{x+y} (7) $e^{x^2+y^2}$ (8) $\sin(xy)$ (9) $\sin(x^2+y^2)$

解答 (結果のみ) (1) $f_{xx} = 12x^2 + 8y^3$, $f_{xy} = 24xy^2 + 7$, $f_{yy} = 24x^2y$ (2) $f_{xx} = -\sin x \cos y$, $f_{xy} = -\cos x \sin y$, $f_{yy} = -\sin x \cos y$ (3) $f_{xx} = y^2 \sinh(xy)$, $f_{xy} = \cosh(xy) + xy \sinh(xy)$, $f_{yy} = x^2 \sinh(xy)$ (4) $f_{xx} = y^2 \cosh(xy)$, $f_{xy} = xy \cosh(xy) \sinh(xy)$, $f_{yy} = x^2 \cosh(xy)$ (5) $f_{xx} = y^2 e^{xy}$, $f_{xy} = (1 + xy)e^{xy}$, $f_{yy} = x^2 e^{xy}$ (6) $f_{xx} = e^{x+y}$, $f_{xy} = e^{x+y}$, $f_{yy} = e^{x+y}$ (7) $f_{xx} = 2(1 + 2x^2)e^{x^2+y^2}$, $f_{xy} = 4xye^{x^2+y^2}$, $f_{yy} = 2(1 + 2y^2)e^{x^2+y^2}$ (8) $f_{xx} = -y^2 \sin(xy)$, $f_{xy} = -xy \sin(xy)$, $f_{yy} = -x^2 \sin(xy)$ (9) $f_{xx} = 2\cos(x^2 + y^2) - 4x^2 \sin(x^2 + y^2)$, $f_{xy} = -4xy \sin(x^2 + y^2)$, $f_{yy} = 2\cos(x^2 + y^2) - 4y^2 \sin(x^2 + y^2)$

82. 次の式によって定められる関数 f について f_{xx} , f_{yy} , f_{zz} , f_{yz} , f_{zx} , f_{xy} を求めよ。

(1)
$$xyz$$
 (2) e^{xyz} (3) $\sin(xyz)$ (4) $x^2y^2z^2+xz^5$ (5) $yz+zx+xy$ (6) e^{x+y+z} (7) $\sin(x+y+z)$ (8) $\sqrt{x^2+y^2+z^2}$

解答(結果のみ)(1) $f_{xx}=0,\ f_{yy}=0,\ f_{zz}=0,\ f_{yz}=x,\ f_{zx}=y,\ f_{xy}=z\ (2)\ f_{xx}=y^2z^2e^{xyz},\ f_{yy}=z^2x^2e^{xyz},\ f_{zz}=x^2y^2e^{xyz},\ f_{yz}=x(1+xyz)e^{xyz},\ f_{zx}=y(1+xyz)e^{xyz},\ f_{xy}=z(1+xyz)e^{xyz},\ f_{xy}=z(1+xyz)e^{xyz},\ f_{xy}=z(1+xyz)e^{xyz},\ f_{xy}=z(1+xyz)e^{xyz}$ (3) $f_{xx}=-y^2z^2\sin(xyz),\ f_{yy}=-z^2x^2\sin(xyz),\ f_{zz}=-x^2y^2\sin(xyz),\ f_{yz}=x(\cos(xyz)-xyz\sin(xyz)),\ f_{xy}=z(\cos(xyz)-xyz\sin(xyz)),\ f_{xy}=z(\cos(xyz)-xyz\sin(xyz))$ (4) $f_{xx}=2y^2z^2,\ f_{yy}=2z^2x^2,\ f_{zz}=2x^2y^2+20xz^3,\ f_{yz}=4x^2yz,\ f_{zx}=4xy^2z+5z^4,\ f_{xy}=4xyz^2$ (5) $f_{xx}=0,\ f_{yy}=0,\ f_{zz}=0,\ f_{yz}=1,\ f_{zx}=1,\ f_{xy}=1$ (6) $f_{xx}=f_{yy}=f_{zz}=f_{yz}=f_{yz}=f_{zz}=f_{yz}=f_{zx}=f_{xy}=-\sin(x+y+z)$ (8) $f_{xx}=y^2+z^2$ ($x^2+y^2+z^2$) x^2+z^2 ($x^2+y^2+z^2$) x^2+z^2 ($x^2+y^2+z^2$) x^2+z^2 0) x^2+z^2 0 $x^2+z^$

83. 次の関数について $f_{xx} + f_{yy} + f_{zz} = 0$ が成り立つことを示せ。

(1)
$$f(x,y,z) = x^2 + y^2 - 2z^2$$
 (2) $f(x,y,z) = e^{3x+4y}\cos 5z$ (3) $f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$

84. u = x + y, v = x - y とする。 C^2 級の関数 f(x,y) に対し、次の式を示せ。

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial u^2} - \frac{\partial^2 f}{\partial v^2}.$$

85. g(t) を C^2 級関数の1変数関数, $f(x,y) = g(x^2 + y^2)$ として、次の式を示せ。

$$f_{xx} + f_{yy} = 4(x^2 + y^2)g''(x^2 + y^2) + 4g'(x^2 + y^2).$$

86. \mathbf{R}^2 で定義された関数

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

について、以下の問に答えよ。

(1) f_x , f_y を求めよ。 (2) $f_{xy}(0,0) = -1$, $f_{yx}(0,0) = 1$ であることを示せ。

解答

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h}.$$

 $f_x(0,0)$ については、定義に戻って

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{1}{h} \left(h \cdot 0 \cdot \frac{h^2 - 0^2}{h^2 + 0^2} - 0 \right)$$
$$= \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0.$$

 $h \neq 0$ のときの $f_x(0,h)$ を求めるには、やり方が2つある。一つは、積の微分法と商の微分法を用いて得られる

$$f_x(x,y) = y\frac{x^2 - y^2}{x^2 + y^2} + xy\frac{4xy^2}{(x^2 + y^2)^2}$$
 $((x,y) \neq (0,0))$

(x,y) = (0,h) を代入するというもの¹。もう一つは、これも微分係数の定義式に戻って

$$f_x(0,h) = \lim_{k \to 0} \frac{f(0+k,h) - f(0,h)}{k} = \lim_{k \to 0} \frac{1}{k} \left(kh \frac{k^2 - h^2}{k^2 + h^2} - 0 \right) = \lim_{k \to 0} h \frac{k^2 - h^2}{k^2 + h^2} = h \frac{0^2 - h^2}{0^2 + h^2} = -h$$

とするもの(普通はこちらは面倒になる場合が多いと思われるが、この問題の場合は案外簡 単)。ゆえに

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{-h - 0}{h} = \lim_{h \to 0} (-1) = -1.$$

後半は前半と同様だが、結構ミスをしている人もいるので書いておく。

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h}.$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{1}{h} \left(0 \cdot h \cdot \frac{0^2 - h^2}{0^2 + h^2} - 0 \right)$$
$$= \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0.$$

 $h \neq 0$ のときの $f_y(h,0)$ を求めるには、

$$f_y(x,y) = x \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{-4x^2y}{(x^2 + y^2)^2} \quad ((x,y) \neq (0,0))$$

に (x,y)=(h,0) を代入するか 2 、微分係数の定義式に戻って

$$f_y(h,0) = \lim_{k \to 0} \frac{f(h,0+k) - f(h,0)}{k} = \lim_{k \to 0} \frac{1}{k} \left(hk \frac{h^2 - k^2}{h^2 + k^2} - 0 \right) = h \frac{h^2 - 0^2}{h^2 + 0^2} = h$$

とする。ゆえに

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{h-0}{h} = \lim_{h \to 0} 1 = 1.$$

87. $\frac{\partial f}{\partial x} = 2y$, $\frac{\partial f}{\partial y} = x$ を満たす C^2 級の関数 f は存在しないことを示せ。

解答
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y}(2y) = 2$$
, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x}(x) = 1$ で $\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$. もし f が C^2 級ならば $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$ が成り立ち、矛盾が生じるので、 f は C^2 級ではありえない。 \blacksquare

88. $f: \mathbf{R}^2 \to \mathbf{R}$

$$f(x,y) := \begin{cases} \frac{x^3y}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

で定めるとき、 $f_{xy}(0,0)$ と $f_{yx}(0,0)$ を求めよ。

 $[\]frac{1}{f_x}$ は整理すると、 $\frac{y(x^4+4x^2y^2-y^4)}{(x^2+y^2)^2}$ となるが、整理する必要はないだろう。 $\frac{x(y^4-4x^2y^2-y^4)}{(x^2+y^2)^2}$ となる。

解答 まず

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3 \cdot 0}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0^3 \cdot h}{0^2 + h^2} - 0 = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0.$$

それから

$$f_x(x,y) = \frac{x^2y(x^2+3y^2)}{(x^2+y^2)^2} \quad ((x,y) \neq (0,0)), \quad 特に \quad f_x(0,y) = \frac{0^2 \cdot y(0^2+3y^2)}{(0^2+y^2)^2} = 0 \quad (y \neq 0),$$

$$f_y(x,y) = \frac{x^3(x^2-y^2)}{(x^2+y^2)^2} \quad ((x,y) \neq (0,0)), \quad 特に \quad f_x(x,0) = \frac{x^3(x^2-0^2)}{(x^2+0^2)^2} = x \quad (x \neq 0).$$

これから

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{h-0}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

89. 次の式で定義される $f: \mathbf{R}^2 \to \mathbf{R}$ に対して、以下の問 (1), (2), (3) に答えよ。

$$f(x,y) := \begin{cases} \frac{x^3y}{x^2 + y^2} + x - y & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

(1) $f_x(0,0)$ と $f_y(0,0)$ を求めよ。 (2) f は C^1 級であることを示せ。 (3) $f_{xy}(0,0)$ と $f_{yx}(0,0)$ を求めよ。 (4) f は C^2 級であるかどうか答えよ。

解答 (1) $h \neq 0$ とするとき f(h,0) = h, f(0,h) = -h であるから、

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h-0}{h} = 1,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{-h-0}{h} = -1.$$

 $(2) (x,y) \neq (0,0)$ のとき、

$$f_x(x,y) = 1 + \frac{y(x^4 + 3x^2y^2)}{(x^2 + y^2)^2}, \quad f_y(x,y) = -1 + \frac{x^3(x^2 - y^2)}{(x^2 + y^2)^2}$$

であるから、 $(x,y) \rightarrow (0,0)$ のとき

$$|f_x(x,y) - f_x(0,0)| = |y| \frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2} \le |y| \frac{x^4 + 4x^2y^2 + y^4}{(x^2 + y^2)^2} = |y| \to 0,$$

$$|f_y(x,y) - f_y(0,0)| = |x| \frac{x^2 |x^2 - y^2|}{(x^2 + y^2)^2} \le |x| \frac{(x^2 + y^2)(|x^2| + |y^2|)}{(x^2 + y^2)^2} = |x| \to 0.$$

すなわち

$$\lim_{\substack{(x,y)\neq(0,0)\\(x,y)\to(0,0)}} f_x(x,y) = f_x(0,0), \quad \lim_{\substack{(x,y)\neq(0,0)\\(x,y)\to(0,0)}} f_y(x,y) = f_y(0,0).$$

ゆえに f_x , f_y ともに (0,0) で連続である。

(3) $h \neq 0$ に対して、

$$f_x(0,h) = 1 + \frac{h(0^4 + 3 \cdot 0^2 h^2)}{(0^2 + h^2)^2} = 1, \quad f_y(h,0) = -1 + \frac{h^3(h^2 - 0^2)}{(h^2 + 0^2)^2} = -1 + h$$

であるから、

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{1-1}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{(-1+h) - (-1)}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

(3) もし f が C^2 級ならば $f_{xy}=f_{yx}$ が成り立つはずであるが、(2) よりそうではないから、f は C^2 級ではない。

C^1 級、微分可能性、偏微分可能性、連続性のチェック

90. 正定数 p に対して、 $f: \mathbf{R} \to \mathbf{R}$ を $f(x) = \begin{cases} |x|^p \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$ で定義するとき、以下 の問に答えよ。(1) f は \mathbf{R} で連続か?(2) f は \mathbf{R} で微分可能か?(3) f は \mathbf{R} で C^1 級か?

解答 まず $\mathbf{R}\setminus\{0\}=\{x\in\mathbf{R};x\neq0\}$ で f は何回でも微分出来る (x>0) の範囲で明らかに C^{∞} 級であり、また f は奇関数であるので、x<0 の範囲でも C^{∞} 級である)。特に連続、微分可能、 C^{1} 級である。それで問題は x=0 においてどうかである。

(1) 連続性は次のようにして分かる。 $|\sin(1/x)| \le 1$ から

$$|f(x)| = |x|^p \left| \sin \frac{1}{x} \right| \le |x|^p \to 0 \quad (x \to 0).$$

ゆえに

$$\lim_{x \to 0} f(x) = 0 = f(0).$$

(2) 微分可能性については、

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|^p}{h} \sin \frac{1}{h}$$

が存在するかという問題である。まず p>1 の場合は 0 という極限を持つ。 $0< p\leq 1$ の場合には極限がない。ゆえに p>1 の場合のみ微分可能 (f'(0)=0)、そうでない場合は微分可能でない。

(3) C^1 級かどうかについて。まず $p \le 1$ の場合は (微分可能でないのだから) 明らかに C^1 級でない。以下 p > 1 とする。まず x > 0 の場合を考えよう。

$$f'(x) = (p-1)x^{p-1}\sin\frac{1}{x} + x^p\cos\frac{1}{x}\left(-\frac{1}{x^2}\right) = (p-1)x^{p-1}\sin\frac{1}{x} - x^{p-2}\cos\frac{1}{x}$$

右辺第 1 項は $x \to +0$ のとき 0 に収束するが、右辺第 2 項については、

$$\lim_{x \to +0} x^{p-2} \cos \frac{1}{x} = \begin{cases} 0 & (p > 2 \text{ の場合}) \\ 極限なし & (1$$

x < 0 の場合も含めてまとめると、

$$\lim_{x \to 0} f'(x) = \begin{cases} 0 = f'(0) & (p > 2) \text{ の場合} \\ 極限なし & (1$$

ゆえに p > 2 の場合 f は C^1 級で、 $0 の場合は <math>C^1$ 級でない。

(p=2 のとき、f は微分可能であるが、 C^1 級ではない関数となり、微積のテキストに例として良く採用されている。)

- **91.** 2回微分可能だが、 C^2 級でない関数 $f: \mathbf{R} \to \mathbf{R}$ の例をあげよ。
- **92.** 全微分可能だが、 C^1 級でない関数 $f: \mathbf{R}^2 \to \mathbf{R}$ の例をあげよ。

例題

次の各関数は、 $(x,y) \neq (0,0)$ の範囲で C^{∞} 級であることは明らかであるが、 \mathbf{R}^2 全体で (a) 連続である, (b) 各変数につき偏微分可能である, (c) 全微分可能である, (d) C^1 級である, の各条件を満たすかどうか調べよ。

(1)
$$f(x,y) = \sqrt{x^2 + y^2}$$

(2)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

(3)
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

(4)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

(5)
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

解答 どの条件を満たすか、結果だけ先に書いておこう。(1)(a)(2)(b)(3)(a),(b)

- (4) (a), (b), (c) (5) (a),(b),(c),(d) となる。
- (1) $g(t) = \sqrt{t}$ $(t \ge 0)$, $\varphi(x,y) = x^2 + y^2$ $((x,y) \in \mathbf{R}^2)$ は連続であり、 $f = g \circ \varphi$. f は連続関数の合成関数なので連続である。しかし極限

$$\lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sqrt{h^2} - 0}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

は存在しないので、f は (0,0) で x について偏微分可能でない。「全微分可能ならば各変数について偏微分可能」であるから、全微分可能ではない。「 C^1 とは、各変数につき偏微分可能で、偏導関数がすべて連続のこと」であるから、 C^1 級でない。

(2) $\lim_{\stackrel{(x,y)\to(0,0)}{(x,y)\neq(0,0)}} f(x,y)$ は存在しないので (これは講義でやった。y=kx に沿った極限が食い違うから、が理由。別のやり方として、|f(x,y)-f(0,0)| が 0 に収束しないことを確かめる方法がある)、f は (0,0) で連続ではない。

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h \cdot 0}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0 \cdot h}{0^2 + h^2} - 0}{h} = \lim_{h \to 0} 0 = 0$$

であるから、f は (0,0) で x,y のそれぞれについて偏微分可能。「全微分可能ならば連続」であるから、全微分可能ではない。「 C^1 級ならば全微分可能」であるから、 C^1 級でない。

 $(3) (x,y) \neq (0,0)$ のとき、

$$|f(x,y) - f(0,0)| = \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| = |x| \sqrt{\frac{y^2}{x^2 + y^2}} \le |x| \sqrt{\frac{x^2 + y^2}{x^2 + y^2}} = |x|$$

で、 $(x,y) \rightarrow (0,0)$ のとき、 $|x| \rightarrow 0$ であるから、

$$|f(x,y) - f(0,0)| \to 0$$
, i.e. $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$.

ゆえに f は (0,0) で連続である。

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h \cdot 0}{\sqrt{h^2 + 0^2}} - 0}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0 \cdot h}{\sqrt{0^2 + h^2}} - 0}{h} = \lim_{h \to 0} 0 = 0$$

であるから、f は (0,0) で、x と y のそれぞれについて偏微分可能である。 $(x,y) \neq (0,0)$ とするとき、

$$\frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y}{\sqrt{x^2 + y^2}} = \frac{\frac{xy}{\sqrt{x^2 + y^2}} - 0 - 0 \cdot x - 0 \cdot y}{\sqrt{x^2 + y^2}} = \frac{xy}{x^2 + y^2}$$

であるが、これは $(x,y) \to (0,0)$ のとき 0 に収束しない。ゆえに f は (0,0) で全微分可能ではない。「 C^1 級ならば全微分可能」なので C^1 級ではない。

(4)
$$\left| h \sin \frac{1}{|h|} \right| \le |h| \to 0 \ (h \to 0)$$
 に注意すると、

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{(h^2 + 0^2) \sin \frac{1}{\sqrt{h^2 + 0^2}} - 0}{h} = \lim_{h \to 0} h \sin \frac{1}{|h|} = 0,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{(0^2 + h^2)\sin\frac{1}{\sqrt{0^2 + h^2}} - 0}{h} = \lim_{h \to 0} h\sin\frac{1}{|h|} = 0$$

であるから、f は (0,0) で、x と y のそれぞれについて偏微分可能である。 $(x,y) \neq (0,0)$ とするとき、

$$\frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y}{\sqrt{x^2 + y^2}} = \frac{(x^2 + y^2)\sin\frac{1}{\sqrt{x^2 + y^2}} - 0 - 0 \cdot x - 0 \cdot y}{\sqrt{x^2 + y^2}}$$
$$= \sqrt{x^2 + y^2}\sin\frac{1}{\sqrt{x^2 + y^2}}.$$

 $(x,y) \to (0,0)$ のとき、 $\left| \sqrt{x^2 + y^2} \sin \frac{1}{\sqrt{x^2 + y^2}} \right| \le \sqrt{x^2 + y^2} \to 0$ であるから、(はさみ うちの原理によって)

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y}{\sqrt{x^2 + y^2}} = 0.$$

ゆえに f は (0,0) で全微分可能である。一方、 $(x,y) \neq (0,0)$ とするとき、

$$f_x(x,y) = 2x \cdot \sin \frac{1}{\sqrt{x^2 + y^2}} + (x^2 + y^2) \cdot \cos \frac{1}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left[(x^2 + y^2)^{-1/2} \right]$$
$$= 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{x}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

であるから、

$$f_x(x,0) = 2x \sin \frac{1}{|x|} - \frac{x}{|x|} \cos \frac{1}{|x|}.$$

ゆえに

$$\lim_{x \to +0} f_x(x,0) = \lim_{x \to +0} \left(2x \sin \frac{1}{x} - \cos \frac{1}{x} \right)$$

これは極限が存在しない。従って、 $f_x(x,y)$ は $(x,y) \to (0,0)$ のとき $f_x(0,0)$ には収束しない。ゆえに f は C^1 級ではない。

(5)
$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = \lim_{h \to 0} 0 = 0,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = \lim_{h \to 0} 0 = 0$$

であるから、f は (0,0) で x と y のそれぞれについて偏微分可能である。 $(x,y) \neq (0,0)$ とするとき、

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}, \quad f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

であるが、

$$|f_x(x,y) - f_x(0,0)| \le |y| \frac{x^4 + 4x^2y^2 + y^4}{(x^2 + y^2)^2} \le 2|y| \frac{x^4 + 2x^2y^2 + y^4}{(x^2 + y^2)^2} = 2|y| \to 0,$$

$$|f_y(x,y) - f_y(0,0)| \le |x| \frac{x^4 + 4x^2y^2 + y^4}{(x^2 + y^2)^2} \le 2|x| \frac{x^4 + 2x^2y^2 + y^4}{(x^2 + y^2)^2} = 2|x| \to 0$$

であるから、 C^1 級である。一般に「 C^1 級ならば全微分可能」であるから、全微分可能である。

解説&お説教(?)

- (a),(b),(c),(d) の定義と、 $(d) \Longrightarrow (c),(c) \Longrightarrow (a),(c) \Longrightarrow (b)$ が成り立つことはしっかりマスターしておくこと。
- ●極限の計算がきちんと出来ること。はさみうちの原理を使うために不等式にも慣れる必要がある。(これらは、例や例題の解答を熟読して、分からないことがあれば、それを解消しておく努力が必要である。)
- 諸君の先輩達の期末試験の答案を見ると、不等式の扱いがめちゃくちゃであるものがかなり多い。
 - 平然と $x^2 \le x^3$ とか $y^2 \le y^4$ とする人がいるが (指数が大きい方が大きいと信じている?)、無条件では成立しない。x が正とは限らない (x < 0 ならば $x^3 < 0 < x^2$ である)。またそもそも x, y は 0 に近づけることが多いので、どちらかというと逆であろう。例えば 0 < x < 1 ならば

$$0 < a < b \quad \Rightarrow x^a > x^b.$$

この場合、正しくは $x^2 \ge |x^3|$, $y^2 \ge y^4$ (x, y) が十分 0 に近いとき)

- はさみうちの原理を誤解しているケース。 $(x,y) \rightarrow (a,b)$ のとき

$$|f(x,y) - A| \le g(x,y), \quad g(x,y) \to 0$$

が示されれば、 $-g(x,y) \leq f(x,y) - A \leq g(x,y)$ の両辺が 0 に収束することから、 $\lim_{(x,y)\to(a,b)} f(x,y) = A$ が言える。絶対値抜きの $f(x,y) - A \leq g(x,y) \to 0$ では、は さめない!また $g(x,y) \to 0$ が分かったからと言って、 $\lim_{(x,y)\to(a,b)} f(x,y) = A$ でない とは結論できない (大きい方が 0 に収束しなくても、小さい方は 0 に収束するかも 知れないでしょう?単に g(x,y) の取り方がまずくて、 $|f(x,y)-A| \leq g(x,y)$ の評 価が甘すぎるのかもしれない。)。 \blacksquare

• *f* が *a* で全微分可能であるとは、ある行列 *A* が存在して、

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Ah\|}{\|h\|} = 0$$

が成り立つこと、と講義で定義してあるが、このままではチェックしづらい。f が a で 全微分可能であるためには、f が a で各変数について偏微分可能であり、かつヤコビ行列 $A:=\left(\frac{\partial f_i}{\partial x_i}(a)\right)$ に対して、

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Ah\|}{\|h\|} = 0 \tag{*}$$

が成り立つことが必要十分である。こちらの方がチェックしやすい。f が 2 変数の実数 値関数であれば、 (\bigstar) は

$$\lim_{(h,k)\to(0,0)} \frac{f(a+h,b+k) - f(a,b) - f_x(a,b)h - f_y(a,b)k}{\sqrt{h^2 + k^2}} = 0$$

と書き換えられる。

93. 次の各関数は、 $(x,y) \neq (0,0)$ の範囲で C^{∞} 級であることは明らかであるが、 \mathbf{R}^2 全体で (a) 連続である, (b) 各変数につき偏微分可能である, (c) 全微分可能である, (d) C^1 級である, の各条件を満たすかどうか調べよ。

(1)
$$f(x,y) = \begin{cases} \frac{x^3 + x^2 + xy^2 + xy + y^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 1 & ((x,y) = (0,0)) \end{cases}$$

(2)
$$f(x, y, z) = \begin{cases} \frac{xyz}{x^2 + y^2 + z^2} & ((x, y, z) \neq (0, 0, 0)) \\ 0 & ((x, y, z) = (0, 0, 0)) \end{cases}$$

(3)
$$f(x,y) = \begin{cases} \frac{\sin x^2 + \sin y^2}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 1 & ((x,y) = (0,0)) \end{cases}$$

(4)
$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)). \end{cases}$$

(5)
$$f(x,y) := \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)). \end{cases}$$

(6)
$$f(x,y) := \begin{cases} \frac{x^4 - y^4}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)). \end{cases}$$

解答 (1) f は (0,0) で連続でない。なぜならば

$$f(x,y) - f(0,0) = \dots = \frac{x^3 + xy^2 + xy}{x^2 + y^2} = x + \frac{xy}{x^2 + y^2}$$

であり、これは $(x,y) \to (0,0)$ のとき 0 に収束しないから。当然、f は全微分可能でも、 C^1 級でもない。一方 f は x,y について偏微分可能で、 $f_x(0,0)=1, f_y(0,0)=0$.

$$(2) \ x^2 + y^2 + z^2 \geq y^2 + z^2 \geq 2\sqrt{y^2z^2} = 2|yz| \ \ \text{であるから、} \frac{|yz|}{x^2 + y^2 + z^2} \leq \frac{1}{2}. \ \$$
ゆえに

$$|f(x,y,z) - f(0,0,0)| = \frac{|xyz|}{x^2 + y^2 + z^2} \le \frac{|x|}{2}$$

なので、f は連続である。 $f_x(0,0,0)=f_y(0,0,0)=f_z(0,0,0)=0$ となるので、偏微分可能。これから

$$\frac{f(x,y,z) - f(0,0,0) - f_x(0,0,0)x - f_y(0,0,0)y - f_z(0,0,0)z}{\sqrt{x^2 + y^2 + z^2}} = \frac{xyz}{(x^2 + y^2 + z^2)^{3/2}}.$$

この極限は存在しないので、f は全微分可能ではない。ゆえに f は C^1 級でもない。

- (3) 昨年度講義ノート³ の付録 pp.154-155 を見よ。
- (4) 曲線 $x=ky^2$ (k は定数) にそって $(x,y)\to (0,0)$ としたときの極限を考えると、結果が k によることから、 $\lim_{(x,y)\to (0,0)}f(x,y)$ は存在しない。ゆえに f は連続ではない。当然、全微分可能でもないし、 C^1 級でもない。一方、f は x と y のそれぞれについて偏微分可能である (実

³http://www.math.meiji.ac.jp/~mk/lecture/tahensuu1-2010/tahensuu1-2010.pdf

際 $f_x(0,0) = 0$, $f_y(0,0) = 0$)。

(5) f は連続である。実際、

$$|f(x,y) - f(0,0)| = \left| \frac{x^3 + y^3}{x^2 + y^2} - 0 \right| \le \frac{|x| \cdot x^2}{x^2 + y^2} + \frac{|y| \cdot y^2}{x^2 + y^2} \le |x| + |y| \to 0.$$

また

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3 + 0^3}{h^2 + 0^2}}{h} = \lim_{h \to 0} 1 = 1,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{0^3 + h^3}{h^2 + h^2}}{h} = \lim_{h \to 0} 1 = 1$$

であるから偏微分可能。

$$\frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)}{\sqrt{x^2 + y^2}} = \frac{\frac{x^3 + y^3}{x^2 + y^2} - 0 - 1 \cdot x - 1 \cdot y}{\sqrt{x^2 + y^2}}$$
$$= -\frac{xy(x+y)}{(x^2 + y^2)^{3/2}}$$

は 0 に収束しないので $(y = kx \ f)$ テクニック!)、f は (0,0) で全微分可能ではない。ゆえに fは \mathbb{R}^2 で \mathbb{C}^1 級でもない。

(6) 連続である。 $f_x(0,0) = 1$, $f_y(0,0) = -1$ であり偏微分可能。

$$\frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y}{\sqrt{x^2 + y^2}} = \frac{\frac{x^4 - y^4}{x^2 + y^2} - x + y}{\sqrt{x^2 + y^2}} = \frac{-x^3 + x^4 + x^2y - xy^2 + y^3 - y^4}{(x^2 + y^2)^{3/2}}$$

は $(x,y) \rightarrow (0,0)$ のとき極限を持たない。ゆえに f は (0,0) で全微分可能ではない。ゆえに f は \mathbb{R}^2 で \mathbb{C}^1 級でもない。

極座標

94.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \theta \end{pmatrix}$$
とするとき、以下のものを求めよ。
$$(a) \begin{pmatrix} x_r & x_\theta & x_\phi \\ y_r & y_\theta & y_\phi \\ z_r & z_\theta & z_\phi \end{pmatrix}$$
 (b) ヤコビアン $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$ (c) 逆写像のヤコビ行列 $\begin{pmatrix} r_x & r_y & r_z \\ \theta_x & \theta_y & \theta_z \\ \phi_x & \phi_y & \phi_z \end{pmatrix}$

((a),(b) は必修。(c) は出来なくてもよいが、(a) の各列ベクトルが直交 l ばそれほど難しくない)。

解答

(a)
$$\begin{pmatrix} x_r & x_\theta & x_\phi \\ y_r & y_\theta & y_\phi \\ z_r & z_\theta & z_\phi \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{pmatrix}$$

(b) 3 次なので Sarrus の規則を使って計算することもできる。ここでは第 3 列で展開してみよう。

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} = \begin{vmatrix} x_r & x_\theta & x_\phi \\ y_r & y_\theta & y_\phi \\ z_r & z_\theta & z_\phi \end{vmatrix} = \begin{vmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \end{vmatrix}$$

$$= (-1)^{1+3}(-r\sin\theta\sin\phi) \begin{vmatrix} \sin\theta\sin\phi & r\cos\theta\sin\phi \\ \cos\theta & -r\sin\theta \end{vmatrix}$$

$$+ (-1)^{2+3}(r\sin\theta\cos\phi) \begin{vmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi \\ \cos\theta & -r\sin\theta \end{vmatrix}$$

$$= -r\sin\theta\sin\phi \cdot r\sin\phi \begin{vmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi \\ \cos\theta & -r\sin\theta \end{vmatrix}$$

$$= -r\sin\theta\sin\phi \cdot r\sin\phi \begin{vmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi \\ \cos\theta & -r\sin\theta \end{vmatrix}$$

$$= r^2\sin\theta\sin^2\phi + r^2\sin\theta\cos^2\phi = r^2\sin\theta.$$

(c) (a) の結果を (a b c) と書くと、簡単な計算で (目で見て暗算で内積を計算して確認できるレベル)、a, b, c は互いに直交していることが分かる。また

$$(\boldsymbol{a}, \boldsymbol{a}) = (\sin \theta \cos \phi)^2 + (\sin \theta \sin \phi)^2 + (\cos \theta)^2 = 1,$$

$$(\boldsymbol{b}, \boldsymbol{b}) = (r \cos \theta \cos \phi)^2 + (r \cos \theta \sin \phi)^2 + (-r \sin \theta)^2 = r^2,$$

$$(\boldsymbol{c}, \boldsymbol{c}) = (r \sin \theta \sin \phi)^2 + (r \sin \theta \cos \phi)^2 = r^2 \sin^2 \theta.$$

ゆえに

$$\begin{pmatrix} \boldsymbol{a}^T \\ \boldsymbol{b}^T \\ \boldsymbol{c}^T \end{pmatrix} (\boldsymbol{a} \ \boldsymbol{b} \ \boldsymbol{c}) = \begin{pmatrix} \boldsymbol{a}^T \boldsymbol{a} & \boldsymbol{a}^T \boldsymbol{b} & \boldsymbol{a}^T \boldsymbol{c} \\ \boldsymbol{b}^T \boldsymbol{a} & \boldsymbol{b}^T \boldsymbol{b} & \boldsymbol{b}^T \boldsymbol{c} \\ \boldsymbol{c}^T \boldsymbol{a} & \boldsymbol{c}^T \boldsymbol{b} & \boldsymbol{c}^T \boldsymbol{c} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}.$$

第 2 行を r^2 , 第 3 行を $r^2 \sin^2 \theta$ で割れば、単位行列になる:

$$egin{pmatrix} oldsymbol{a}^T \ rac{1}{r^2}oldsymbol{b}^T \ rac{1}{r^2\sin^2 heta}oldsymbol{c}^T \end{pmatrix} (oldsymbol{a} oldsymbol{b} oldsymbol{c}) = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

ゆえに

$$(\boldsymbol{a} \ \boldsymbol{b} \ \boldsymbol{c})^{-1} = \begin{pmatrix} \boldsymbol{a}^T \\ \frac{1}{r^2} \boldsymbol{b}^T \\ \frac{1}{r^2 \sin^2 \theta} \boldsymbol{c}^T \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \frac{1}{r} \cos \theta \cos \phi & \frac{1}{r} \cos \theta \sin \phi & -\frac{1}{r} \sin \theta \\ -\frac{\sin \phi}{r \sin \theta} & -\frac{\cos \phi}{r \sin \theta} & 0 \end{pmatrix} . \blacksquare$$

95. 地球の表面上にある 2 点の緯度経度が分かっているときに、その 2 点間の (表面に沿っての最短の) 道のりの長さの求め方を説明せよ (ただし地球は球であると考える)。具体的な問題が欲しければ、アレクサンドリアの図書館 (北緯 $31^{\circ}12'=31.20^{\circ}$, 東経 $29^{\circ}55'=29.91^{\circ}$) と生田キャンパス (北緯 $35^{\circ}37'=35.61^{\circ}$, 東経 $139^{\circ}33'=139.55^{\circ}$) の地球表面に沿った道のりの長さを求めよ。

解説 (この手の問題は、大昔ならば球面三角法として、講義もされたのだろうけれど、現在ではベクトルの計算で簡単にできることとして、逆にあまり説明されないのかも… 参考まで)極座標と直交座標 (デカルト座標) の関係式を理解していれば、緯度、経度から直交座標を求める式は導けるはず (省略)。後は、地球の中心から二点 \vec{x} , \vec{y} を見込む角 θ を $\cos\theta = \frac{(\vec{x}, \vec{y})}{\|\vec{x}\| \|\vec{y}\|}$ で算出して、道のり = $R\theta$ (R は地球の半径) とすれば良い。

96. $(x,y,z) \in \mathbf{R}^3$, $(y,z) \neq (0,0)$ に対して、

 $x = r\cos\theta, \quad y = r\sin\theta\cos\phi, \quad z = r\sin\theta\sin\phi, \quad r \in (0, \infty), \theta \in (0, \pi), \phi \in [0, 2\pi)$

を満たす (r,θ,ϕ) が一意的に定まることを示せ。また、この式で φ : $(0,\infty)\times(0,\pi)\times[0,2\pi)$ \ni $(r,\theta,\phi)\mapsto(x,y,z)\in\mathbf{R}^3$ を定めるとき、 $\varphi'(r,\theta,\phi)$ と、 $\det\varphi'(r,\theta,\phi)$ を求めよ。

解答 まず r は $r=\sqrt{x^2+y^2+z^2}$ で求まる。 $(y,z)\neq 0$ としてあるので、r>0 に注意する と、 θ は $\theta=\cos^{-1}\frac{x}{r}$ で求まる。 $(y,z)\neq (0,0)$ から $|x|=\sqrt{x^2}<\sqrt{x^2+y^2+z^2}=r$ であるので、|x|/r<1 より $\theta\neq 0,\pi,\sin\theta>0$ に注意すると、 $(\cos\phi,\sin\phi)=\left(\frac{y}{r\sin\theta},\frac{z}{r\sin\theta}\right)$ から、 $\phi\in[0,2\pi)$ が定まる。後半は普通の極座標とほぼ同じである。

$$\varphi'(r,\theta,\phi) = \begin{pmatrix} x_r & x_\theta & x_\phi \\ y_r & y_\theta & y_\phi \\ z_r & z_\theta & z_\phi \end{pmatrix} = \begin{pmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \end{pmatrix}.$$

$$\det \varphi'(r, \theta, \phi) = ($$
途中略 $) = r^2 \sin \theta$.

(この問題の式は、いわば (1,0,0) を北極にした極座標である。これは試験のために作ったわざとらしい式ではなくて、世の中にかなり流布している式である。すいすい使いこなせなければいけない。)

97. $f(r,\phi,\lambda) := \begin{pmatrix} r\cos\phi\cos\lambda \\ r\cos\phi\sin\lambda \\ r\sin\phi \end{pmatrix}$ とするとき $\det f'(r,\phi,\lambda)$ を求めよ。(いわゆる緯度経度方式である。 ϕ が緯度 (latitude), λ が経度 (longitude) に相当する。)

解答
$$f'(r,\phi,\lambda) = \begin{pmatrix} \cos\phi\cos\lambda & -r\sin\phi\cos\lambda & -r\cos\phi\sin\lambda \\ \cos\phi\sin\lambda & -r\sin\phi\sin\lambda & r\cos\phi\cos\lambda \\ \sin\phi & r\cos\phi & 0 \end{pmatrix}$$
 である。 $\det f'(r,\phi,\lambda) = -r^2\cos\phi$.

グラフ,接平面,法線

98. 次の関数のグラフの、与えられた点における接平面を求めよ。

(1)
$$\frac{x^2}{x^2} + \frac{y^2}{b^2}$$
 $(a \neq 0, b \neq 0), (x, y) = (a, b)$

(2)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2}$$
 $(a \neq 0, b \neq 0), (x, y) = (a, b)$

(3)
$$3x^2 - 4y$$
, $(x, y) = (1, 2)$

(4)
$$\sqrt{14-x^2-y^2}$$
, $(x,y)=(-1,-2)$

(5)
$$\sqrt{17-5x^2-4y^2}$$
, $(x,y)=(-1,1)$

(6)
$$(x^2 + y^2)^{1/3}$$
, $(x, y) = (2, -2)$

(7)
$$e^x \sin y$$
, $(x, y) = (-\log \pi, \pi/2)$

(8)
$$\sin(xy), (x,y) = (\sqrt{2}\pi, -2\sqrt{2})$$

解答 (結果のみ) f のグラフ z=f(x,y) の、(a,b) における接平面の方程式は、 $z=f_x(a,b)(x-a)+f_y(a,b)(y-b)+f(a,b)$ である。

$$a) + f_y(a,b)(y-b) + f(a,b)$$
 である。
$$(1) z = \frac{2}{a}x + \frac{2}{b}y - 2 \quad (2) z = \frac{2}{a}x - \frac{2}{b}y \quad (3) z = 6x - 4y - 3$$

(1)
$$z = a^{x} + b^{y}$$
 (2) $z = a^{x} - b^{y}$ (3) $z = 6x - 4y$ (4) $x + 2y - 3z + 14 = 0$ (5) $5x - 4y - 2\sqrt{2}z + 17 = 0$ (6) $x - y - 3z + 2 = 0$

(7)
$$x - \pi z + \log \pi + 1 = 0$$
 (8) $z = -2\sqrt{2}x + \sqrt{2}\pi y + 8\pi$

99. 次の 2 変数関数 f について、 $\operatorname{grad} f$ を求め、等高線を何本か描き、この $\operatorname{grad} f$ は等高線と直交することを確かめよ。(1) f(x,y) = x + 2y. (2) $f(x,y) = x^2 + y^2$.

100. 次の曲面の接平面と法線を求めよ。

(1)
$$z = xy(x^2 + y^2 - 4)$$
. 点 $(1, 2, 2)$ で。 $(2) \cos(x + y + z) = 0$. 点 $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$ で。

(3)
$$\sin x + y^2 + z^2 = 2$$
. 点 $\left(\frac{\pi}{2}, 1, 0\right)$ で。

解説 3変数関数 F(x,y,z) のレベルセット $\{(x,y,z); F(x,y,z) = h\}$ (h はある実数) 上の点 (a,b,c) における接平面は

$$\nabla F(a,b,c) \cdot \begin{pmatrix} x-a \\ y-b \\ z-c \end{pmatrix} = 0, \quad \text{f なわち} \quad F_x(a,b,c)(x-a) + F_y(a,b,c)(y-b) + F_z(a,b,c)(z-c) = 0$$

で与えられる。また (a,b,c) における法線は

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + t\nabla F(a, b, c) \quad (t \in \mathbf{R}),$$

すなわち、

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + t \begin{pmatrix} F_x(a, b, c) \\ F_y(a, b, c) \\ F_z(a, b, c) \end{pmatrix} \quad (t \in \mathbf{R})$$

で与えられる。

3次元空間内の曲面は、コンピューターで描くことが出来る (場合がある)。数式処理系の Mathematica は有名だが、グラフ描画用のフリーソフトである gnuplot が案外便利である (曲面はどの方向から見るかで、分かりやすくも分かりにくくもなるが、gnuplot では、マウスを使って曲面を「動かす」こと⁴が出来るので、様子が分かりやすい。印刷してしまうと今一つ分かりづらくて残念。)。

⁴本当は、視点を変化させていると言うべきだろうけれど、マウスで「つかんで」いると「動かして」いるような気になる。

解答

(1) $F(x,y,z) := xy(x^2+y^2-4)-z = x^3y+xy^3-4xy-z$ とおくと、方程式 F(x,y,z)=0 は与えられた曲面を表す。

$$\nabla F(x, y, z) = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} 3x^2y + y^3 - 4y \\ x^3 + 3xy^2 - 4x \\ -1 \end{pmatrix}$$

であるから、

$$\nabla F(1,2,2) = \begin{pmatrix} 3 \cdot 1^2 \cdot 2 + 2^3 - 4 \cdot 2 \\ 1^3 + 3 \cdot 1 \cdot 2^2 - 4 \cdot 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 9 \\ -1 \end{pmatrix}.$$

接平面は、(1,2,2) を通り、(6,9,-1) に垂直だから

$$6 \cdot (x-1) + 9 \cdot (y-2) - 1(z-2) = 0$$

で与えられる。整理して 6x+9y-z=22. (**別解** $f(x,y):=xy(x^2+y^2-4)$ とおく。 z=f(x,y) の (x,y)=(1,2) における接平面は、 $z=f(1,2)+f_x(1,2)(x-1)+f_y(1,2)(y-2)$ で、これに f(1,2)=2, $f_x(1,2)=6$, $f_y(1,2)=9$ を代入すると、z=2+6(x-1)+9(y-2) で、整理して z=6x+9y-22.)

一方、法線は、(1,2,2) を通り、(6,9,-1) に平行だから

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 6 \\ 9 \\ -1 \end{pmatrix} \quad (t \in \mathbf{R}).$$

x*y*(x**2+y**2-4)

なお、この直線は、方程式 $\frac{x-1}{6} = \frac{y-2}{9} = \frac{z-2}{-1}$ でも表せる。

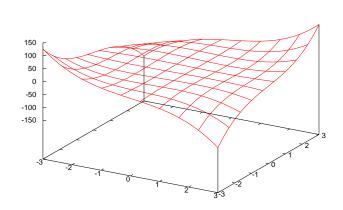


図 1: (1) gnuplot で splot [-3:3] [-3:3] x*y*(x**2+y**2-4) マウスでつかんでグリグリ動かすと感じが分かるのだけど…

(2) これは実は微積分を使わないでも解ける。 $\cos(x+y+z)=0$ は、 $x+y+z=\left(n+\frac{1}{2}\right)\pi$ $(n\in\mathbf{Z})$ と解けて、無限枚の平面を表す。特に $\left(\frac{\pi}{6},\frac{\pi}{6},\frac{\pi}{6}\right)$ を通るのは、n=0 に対応している $x+y+z=\frac{\pi}{2}$ であり、接平面はこれそのものとなる。

一応、推奨手順にのっとってやろう。 $F(x,y,z) := \cos(x+y+z)$ とおくと、方程式 F(x,y,z) = 0 は与えられた曲面を表す。

$$\nabla F(x,y,z) = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} -\sin(x+y+z) \\ -\sin(x+y+z) \\ -\sin(x+y+z) \end{pmatrix} = -\sin(x+y+z) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

であるから、

$$\nabla F\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6} + \frac{\pi}{6} + \frac{\pi}{6}\right) \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} -1\\-1\\-1 \end{pmatrix}.$$

接平面は、 $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$ を通り、(-1, -1, -1) に垂直なので、

$$-1 \cdot \left(x - \frac{\pi}{6}\right) - 1 \cdot \left(y - \frac{\pi}{6}\right) - 1 \cdot \left(z - \frac{\pi}{6}\right) = 0$$

で与えられる。整理して $x+y+z=\frac{\pi}{2}$

法線は、 $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$ を通り、(-1, -1, -1) に平行なので、

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{\pi}{6} \\ \frac{\pi}{6} \\ \frac{\pi}{6} \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \quad (t \in \mathbf{R}).$$

で与えられる。このままでも良いが、 $(\frac{\pi}{6} - t \ ext{e} \ s \ ext{e}$ 置いて)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad (s \in \mathbf{R}).$$

と書き直すこともできる。

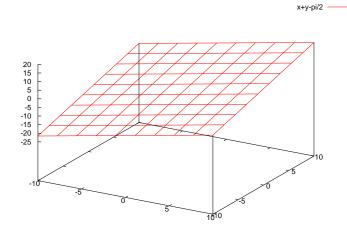


図 2: (2) gnuplot で splot x+y-pi/2 問題の点を含む 1 枚分だけ描いた

(3) $F(x,y,z) := \sin x + y^2 + z^2 - 2$ とおくと、方程式 F(x,y,z) = 0 は与えられた曲面を表す。

$$\nabla F(x, y, z) = \begin{pmatrix} \cos x \\ 2y \\ 2z \end{pmatrix}$$

であるから、

$$\nabla F\left(\frac{\pi}{2}, 1, 0\right) = \begin{pmatrix} \cos\frac{\pi}{2} \\ 2 \cdot 1 \\ 2 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}.$$

接平面は、 $\left(\frac{\pi}{2},1,0\right)$ を通り、 $\left(0,2,0\right)$ に垂直なので、

$$0 \cdot \left(x - \frac{\pi}{2}\right) + 2 \cdot (y - 1) + 0 \cdot (z - 0) = 0$$

で与えられる。整理して y=1. 法線は、 $\left(\frac{\pi}{2},1,0\right)$ を通り、 $\left(0,2,0\right)$ に平行なので、

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{\pi}{2} \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \quad (t \in \mathbf{R})$$

で与えられる。このままでも良いが (1+2t を s と置いて)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{\pi}{2} \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad (s \in \mathbf{R})$$

と書き直すことも出来る。

(このグラフはどうやって描けばいいかなあ…y またはz について解いて関数のグラフとすることは出来るけれど。この辺は「陰関数定理」に入ってから説明します。) \blacksquare

101. \mathbf{R}^2 上の関数 $f(x,y)=6x^2-xy^3+2y^4$ のグラフ $\{(x,y,z)\in\mathbf{R}^3;z=f(x,y)\}$ 上の点 (1,1,7) における接平面と法線を求めよ。

解答

 $z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b) = 11(x-1) + 5(y-1) + 7 = 11x + 5y - 9.$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 7 \end{pmatrix} + t \begin{pmatrix} 11 \\ 5 \\ -1 \end{pmatrix} \quad (t \in \mathbf{R}). \blacksquare$$

102. r を正定数とするとき、 $f(x,y) = \sqrt{r^2 - x^2 - y^2}$ とおく。(1) $\nabla f(x,y)$ を求めよ。(2) 曲面 z = f(x,y) 上の点 (a,b,c) における接平面を求めよ。

解答 (1)
$$\nabla f(x,y) = \begin{pmatrix} f_x \\ f_y \end{pmatrix} = \begin{pmatrix} -\frac{x}{\sqrt{r^2 - x^2 - y^2}} \\ -\frac{y}{\sqrt{r^2 - x^2 - y^2}} \end{pmatrix}$$
 (2) $ax + by + cz = r^2 \blacksquare$

103. 曲面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ $(a,\,b,\,c$ は正の定数) 上の点 (x_0,y_0,z_0) における接平面の方程式を求めよ。

解答
$$\frac{x_0x}{a^2} + \frac{y_0y}{b^2} + \frac{z_0z}{c^2} = 1.$$

104. (0) 曲線 $\frac{x^2}{3} + \frac{y^2}{2} = 1$ 上の点 $\left(\sqrt{\frac{3}{2}}, 1\right)$ における接線を求めよ。 (1) 曲線 $\frac{x^2}{3} + \frac{y^2}{2} = 1$ の傾き -1 の接線を求めよ。 (2) 曲面 $\frac{x^2}{4} + \frac{y^2}{3} + \frac{z^2}{2} = 1$ と平面 x + y + z = k が接するような実数 k の値を求めよ。

解答

(0)
$$F(x,y) := \frac{x^2}{3} + \frac{y^2}{2}$$
 とおく。

$$\nabla F(x,y) = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix} = \begin{pmatrix} \frac{2x}{3} \\ y \end{pmatrix}, \quad \nabla F\left(\sqrt{\frac{3}{2}},1\right) = \begin{pmatrix} \frac{2}{3} \cdot \sqrt{\frac{3}{2}} \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{2}{3}} \\ 1 \end{pmatrix}.$$

 $\left(\sqrt{\frac{3}{2}},1\right)$ における接線は、この点を通り、 $\nabla F\left(\sqrt{\frac{3}{2}},1\right)$ を法線ベクトルに持つので、

$$\sqrt{\frac{2}{3}}\left(x - \sqrt{\frac{3}{2}}\right) + 1 \cdot (y - 1) = 0.$$

整理して、

$$\sqrt{\frac{2}{3}}x + y - 2 = 0.$$
 $\left(y = -\frac{\sqrt{6}}{3}x + 2\right)$

(1) $F(x,y):=\frac{x^2}{3}+\frac{y^2}{2}$ とおく。求める接線の接点を (x_0,y_0) とすると、これが曲線 F(x,y)=1 上にあることから、

$$\frac{x_0^2}{3} + \frac{y_0^2}{2} = 1. ag{1.1}$$

一方、 $\nabla F(x_0,y_0) = \begin{pmatrix} \frac{2x_0}{3} \\ y_0 \end{pmatrix}$ であるから、接線の方程式は、

$$\frac{2x_0}{3}(x-x_0) + y_0(y-y_0) = 0, \quad \text{i.e.} \quad \frac{x_0x}{3} + \frac{y_0y}{2} = \frac{x_0^2}{3} + \frac{y_0^2}{2} = 1.$$
 (1.2)

 $abla F(x_0,y_0)$ は、曲線 F(x,y)=1 の (x_0,y_0) における (1 つの) 法線ベクトルである。接線の傾きが -1 とは、法線ベクトルが $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ に平行、ということであるから、 $\exists t \in \mathbf{R} \text{ s.t.}$

$$\begin{pmatrix} \frac{2x_0}{3} \\ y_0 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \text{i.e.} \quad (x_0, y_0) = \begin{pmatrix} \frac{3t}{2}, t \end{pmatrix}. \tag{1.3}$$

(1.1), (1.3) を連立方程式として解いて、 $(t, x_0, y_0) = \pm \left(\frac{2}{\sqrt{5}}, \frac{3}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$. これを (1.2) に代入して、

$$x + y = \sqrt{5}, \quad x + y = -\sqrt{5}.$$

(2) $F(x,y,z):=\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}$ とおき、F(x,y,z)=1 の接平面で、法線ベクトルが (1,1,1) に平行なものを求める。上と同様に

$$\frac{x_0^2}{2} + \frac{y_0^2}{3} + \frac{z_0^2}{4} = 1,$$

$$\exists t \in \mathbf{R} \quad \text{s.t.} \quad \left(x_0, \frac{2y_0}{3}, \frac{z_0}{2}\right) = t(1, 1, 1).$$

これを解いて $(t, x_0, y_0, z_0) = \pm \left(\frac{2}{3}, \frac{2}{3}, 1, \frac{4}{3}\right)$. (x_0, y_0, z_0) における接平面の方程式

$$x_0(x-x_0) + \frac{2y_0}{3}(y-y_0) + \frac{z_0}{2}(z-z_0) = 0$$

に代入して、

$$x + y + z = 3$$
, $x + y + z = -3$.

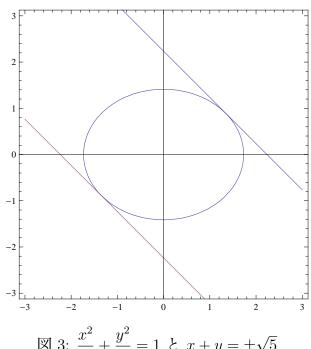
ゆえに $k=\pm 3$.

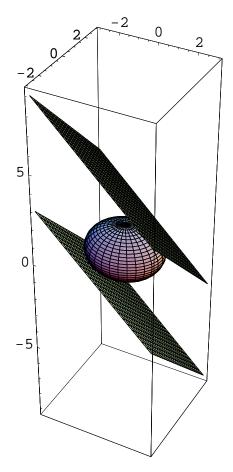
図形的 (直観的) 考察から、(x,y,z) が曲面 F(x,y,z)=1 上を動くときの f(x,y,z) の最大 値は 3((x,y,z)=(2/3,1,4/3) のとき)、最小値は -3((x,y,z)=(-2/3,-1,-4/3) のとき) である。このことの厳密な解答は、条件つき極値問題を学ぶと可能になる。

(1) の答の接線 $(x+y=\sqrt{5}, x+y=-\sqrt{5})$ を、曲線と一緒に描くと、図 3 図示してみよう のようになる。

これら接線の y 切片 (y = -x + b) の形にしたときの b のこと — 実は k ですね) が、x + y((x,y) は F(x,y) = 1 を満たす) の最大値と最小値を与える。分かってもらえると良いのだけ れど…(昔は、こういう問題が高校数学にあったのですが、今はどうなんでしょう。)

(2) は空間図形の話になるので、若干分かりにくくなりますが、本質的には同じことです (楕 円の接線の代わりに、楕円面の接平面になる)。図4に楕円面とその接平面を描きました。





105. 曲面

$$\frac{(x-1)^2}{1} + \frac{(y-2)^2}{4} + \frac{(z-3)^2}{9} = 1$$

について以下の問に答えよ。

(1) 曲面上の点 (4/3,10/3,5) における接平面の方程式を求めよ。(2) 平面 x+y+z=k (k は実定数) が接するように k の値を定めよ。

解答
$$(1) F(x,y,z) := \frac{(x-1)^2}{1} + \frac{(y-2)^2}{4} + \frac{(z-3)^2}{9}$$
 とおくと、 $\operatorname{grad} F = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} 2(x-1) \\ (y-2)/2 \\ 2(z-3)/9 \end{pmatrix}$

 $\operatorname{grad} F\left(\frac{4}{3},\frac{10}{3},5\right) = \left(\frac{2}{3},\frac{2}{3},\frac{4}{9}\right)^T$ であるから、接平面の方程式は

$$\frac{2}{3}\left(x - \frac{4}{3}\right) + \frac{2}{3}\left(y - \frac{10}{3}\right) + \frac{4}{9}(z - 5) = 0.$$

整理して

$$3x + 3y + 2z = 24$$
.

$$(2) 接点 (a,b,c) では、 $\nabla F(a,b,c) \parallel \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ であるから、 $\exists t \in \mathbf{R}$ s.t. $\begin{pmatrix} 2(a-1) \\ (b-2)/2 \\ 2(z-3)/9 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. これから、$$

$$a = \frac{t}{2} + 1$$
, $b = 2t + 2$, $c = \frac{9t}{2} + 3$.

これと F(a,b,c)=1 から、 $t=\pm\sqrt{\frac{2}{7}},$

$$k = a + b + c = 7t + 6 = \pm 7 \cdot \sqrt{\frac{2}{7}} + 6 = 6 \pm \sqrt{14}.$$

なお、接点は
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{\sqrt{14}} \\ 2\left(1 + \sqrt{\frac{2}{7}}\right) \\ 3 + \frac{9}{\sqrt{14}} \end{pmatrix}, \begin{pmatrix} 1 - \frac{1}{\sqrt{14}} \\ 2\left(1 - \sqrt{\frac{2}{7}}\right) \\ 3 - \frac{9}{\sqrt{14}} \end{pmatrix}.$$
 ■

106. 次の2つの曲面 π_1, π_2 が接する (π_1, π_2) の接平面が一致する) ように正定数 λ を定めよ。

$$\pi_1 : xyz = \lambda,$$

 $\pi_2 : x^2 + y^2 + z^2 = 1.$

解答 接点を (a,b,c) とすると、 π_1 の接平面の方程式は

$$bc(x-a)+ca(y-b)+ab(z-c)=0$$
, 整理して $bcx+cay+abz-3\lambda=0$.

π2 の接平面の方程式は

$$2a(x-a) + 2b(y-b) + 2c(z-c) = 0$$
, 整理して $ax + by + cz - 1 = 0$.

この
$$2$$
つの平面が一致するための条件は $\begin{pmatrix} bc \\ ca \\ ab \\ -3\lambda \end{pmatrix}$ と $\begin{pmatrix} a \\ b \\ c \\ -1 \end{pmatrix}$ が比例している、すなわち

$$\exists k \in \mathbf{R} \text{ s.t.} \begin{pmatrix} bc \\ ca \\ ab \\ -3\lambda \end{pmatrix} = k \begin{pmatrix} a \\ b \\ c \\ -1 \end{pmatrix}.$$

これと $a^2 + b^2 + c^2 = 1$ を連立して、 $\lambda = \frac{1}{3\sqrt{3}}$.

107. $f,g: \mathbf{R}^2 \to \mathbf{R}$ を $f(x,y):=x^2+y^2, \ g(x,y):=5x^2+6xy+5y^2-8$ で定め、 $N_g:=\{(x,y)\in \mathbf{R}^2; g(x,y)=0\}$ とおく。

(1) N_g は \mathbf{R}^2 の有界閉集合であることを示せ。(2) N_g 上の点 (x_0,y_0) における、 N_g の接線の方程式を求めよ。(3) $(x_0,y_0) \in N_g$ が曲線 f(x,y) = c (c はある定数) の上にあり、かつ (x_0,y_0) における f(x,y) = c の接線が、 N_g の接線と一致する (つまり N_g と f(x,y) = c が共通の接線を持つ)とき、 (x_0,y_0) を求めよ。(4) N_g における f の最大値、最小値を求めよ (厳密な証明は不要)。

解答

(1) g(x,y) は x と y の多項式であるから、 $g: \mathbf{R}^2 \ni (x,y) \mapsto g(x,y) \in \mathbf{R}$ は連続である。ゆえ に $N_g = \{(x,y) \in \mathbf{R}^2; g(x,y) = 0\}$ は \mathbf{R}^2 の閉集合である。さて、任意の $(x,y) \in \mathbf{R}^2$ に 対して、

$$5x^2 + 6xy + 5y^2 \ge 2(x^2 + y^2)$$

が成り立つ。実際、

左辺 - 右辺 =
$$3x^2 + 6xy + 3y^2 = 3(x+y)^2 \ge 0$$
.

これから $(x,y) \in N_g$ ならば、

$$8 = 5x^2 + 6xy + 5y^2 > 2(x^2 + y^2)$$
 $\emptyset \lambda \subset x^2 + y^2 < 4$.

ゆえに $N_g \subset \overline{B}((0,0);2)$. これは N_g が有界であることを示している。

$$(2)$$
 $\nabla g(x,y) = \begin{pmatrix} 10x + 6y \\ 6x + 10y \end{pmatrix}$ であるから、 (x_0,y_0) における接線の方程式は

$$(10x_0 + 6y_0)(x - x_0) + (6x_0 + 10y_0)(y - y_0) = 0.$$

これから

$$(10x_0 + 6y_0)x + (6x_0 + 10y_0)y = 10x_0^2 + 12x_0y_0 + 10y_0^2.$$

 $(x_0,y_0) \in N_q$ であるから右辺は 16 である。2 で両辺を割って

$$(5x_0 + 3y_0)x + (3x_0 + 5y_0)y = 8.$$

(3) f(x,y) = c の (x_0,y_0) における接線は、 $x_0x+y_0y=c$. これと $(5x_0+3y_0)x+(3x_0+5y_0)y=8$ が一致するので、

$$\exists \lambda \in \mathbf{R} \quad \text{s.t.} \quad \begin{pmatrix} x_0 \\ y_0 \\ c \end{pmatrix} = \lambda \begin{pmatrix} 5x_0 + 3y_0 \\ 3x_0 + 5y_0 \\ 8 \end{pmatrix}.$$

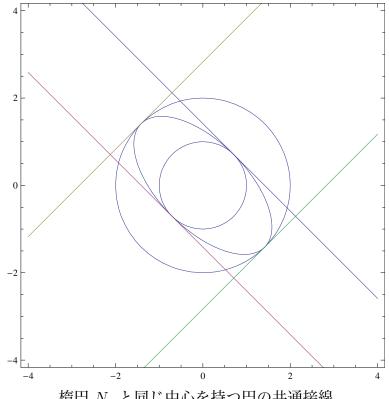
これと $f(x_0,y_0)=c$ あるいは $g(x_0,y_0)=0$ を連立して解いて、

$$(x_0, y_0, c) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 1\right), \left(\sqrt{2}, -\sqrt{2}, 4\right), \left(-\sqrt{2}, \sqrt{2}, 4\right).$$

ちなみに接線の方程式は

$$x_0 + y_0 = \pm \sqrt{2}, \quad x_0 - y_0 = \pm 2\sqrt{2}.$$

(4) f が極値を取るとき、f の等高線 f(x,y) = c の接線は N_g の接線であると考えられる (横断的に交わっている場合は、c を少しずらすことで、f の値を小さくしたり大きくしたり出来るので、極値とはならない)。分かりにくいかも知れないが、図を見ると納得しやすいかも。 (3) で求めた c のうち、大きい方が最大値、小さい方が最小値である。 $(x,y) = \pm(\sqrt{2}, -\sqrt{2})$ のとき最大値 4, $(x,y) = \pm(1/\sqrt{2}, 1/\sqrt{2})$ のとき最小値 1. ■



楕円 N_g と同じ中心を持つ円の共通接線

 $g[x_{y}] := 5x^2 + 6x y + 5y^2 - 8$

 $Ng=ContourPlot[g[x,y]==0,\{x,-4,4\},\{y,-4,4\}]$

Cs=ContourPlot[$\{x^2+y^2==1, x^2+y^2==4\}, \{x, -4, 4\}, \{y, -4, 4\}$]

 $Ts=ContourPlot[{x+y==Sqrt[2], x+y==-Sqrt[2], x-y=2Sqrt[2], x-y==-2Sqrt[2]},$ $\{x,-4,4\},\{y,-4,4\}\}$

Show [Ts, Ng, Cs]

微分方程式 (微分の計算練習)

(あまり意味のない計算をしてもらうのは、こちらも気が引けるので、微分方程式由来の問 題を載せておく。と言ってもほとんどは単なる計算問題だけど。特に合成関数の微分法の計算 が必要になる例が多い。)

108. $f: \mathbf{R}^n \to \mathbf{R}$ を $f(x) := ||x||^{2-n}$ で定めるとき、次式が成り立つことを示せ。

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0.$$

109. $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}$ とおくとき、Laplace **方程式**と呼ばれる微分方程式 $\triangle u = 0$ をみたす 関数 u=u(x,y) は**調和関数**であるという。次の関数は調和関数であることを示せ。 (1) $u(x,y)=\frac{x}{x^2+y^2}$ (2) $u(x,y)=\log\sqrt{x^2+y^2}$ (3) $f(x,y)=\tan^{-1}\frac{y}{x}$

110. 関数 u と v が C^2 級の関数で、Cauchy-Riemann の微分方程式

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

を満たすとき、次の式が成り立つことを示せ。

$$\triangle u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad \triangle v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

111. 関数

$$u(t,x) = \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{\|x\|^2}{4t}\right) \quad (t > 0, x \in \mathbf{R}^n)$$

は次のn次元**熱伝導方程式**を満たすことを示せ。

$$\frac{\partial u}{\partial t} = \triangle u.$$

ただし

$$\triangle := \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} = \frac{\partial^{2}}{\partial x_{1}^{2}} + \cdots + \frac{\partial^{2}}{\partial x_{n}^{2}}.$$

112. $f,g: \mathbf{R} \to \mathbf{R}$ が C^2 級ならば、定数 c > 0 に対して

$$u(t,x) := f(x - ct) + g(x + ct)$$

で定義される関数 u は、次の 1 次元**波動方程式**を満たすことを示せ。

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

113. C^2 級の関数 $u: \mathbf{R}^2 \ni (x,t) \mapsto u(x,t) \in \mathbf{R}$ と正定数 c があるとき、

$$\xi = x - ct$$
, $\eta = x + ct$, $v(\xi, \eta) = u(x, t)$, すなわち $v(\xi, \eta) := u\left(\frac{\xi + \eta}{2}, \frac{\eta - \xi}{2c}\right)$

とおく。このとき次式を証明せよ(左辺、右辺どちらから始めても良い、余裕あれば両方)。

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = -4 \frac{\partial^2 v}{\partial \xi \partial \eta}.$$

解答 (右辺から左辺)

$$x = \frac{1}{2}(\xi + \eta), \quad t = \frac{1}{2c}(\eta - \xi)$$

であるから、

$$x_{\xi} = \frac{1}{2}, \quad x_{\eta} = \frac{1}{2}, \quad t_{\xi} = -\frac{1}{2c}, \quad t_{\eta} = \frac{1}{2c}.$$

chain rule によって

$$v_{\eta} = u_{x}x_{\eta} + u_{t}t_{\eta} = \frac{1}{2}u_{x} + \frac{1}{2c}u_{t},$$

$$v_{\eta\xi} = \frac{1}{2}(u_{xx}x_{\xi} + u_{xt}t_{\xi}) + \frac{1}{2c}(u_{tx}x_{\xi} + u_{tt}t_{\xi}) = \frac{1}{4}u_{xx} - \frac{1}{4c}u_{xt} + \frac{1}{4c}u_{tx} - \frac{1}{4c^{2}}u_{tt}$$

$$= \frac{1}{4}\left(u_{xx} - \frac{1}{c^{2}}u_{tt}\right).$$

ゆえに

$$\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} = -4\frac{\partial^2 v}{\partial \xi \partial \eta}.$$

(左辺から右辺)

$$\xi_x = 1, \quad \xi_t = -c, \quad \eta_x = 1, \quad \eta_t = c.$$

chain rule によって

$$\begin{aligned} u_t &= v_\xi \xi_t + v_\eta \eta_t = -c v_\xi + c v_\eta, \\ u_{tt} &= -c (v_{\xi\xi} \xi_t + v_{\xi\eta} \eta_t) + c (v_{\eta\xi} \xi_t + v_{\eta\eta} \eta_t) = c^2 v_{\xi\xi} - c^2 v_{\xi\eta} - c^2 v_{\eta\xi} + c^2 v_{\eta\eta} \\ &= c^2 (v_{\xi\xi} + v_{\xi\eta} + v_{\eta\xi} + v_{\eta\eta}), \\ u_x &= v_\xi \xi_x + v_\eta \eta_x = v_\xi + c_\eta, \\ u_{xx} &= v_{\xi\xi} + v_{\xi\eta} + v_{\eta\xi} + v_{\eta\eta} \end{aligned}$$

であるから、

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} = -4 \frac{\partial^2 v}{\partial \xi \partial \eta}. \blacksquare$$

114. $f:(x,y) \mapsto f(x,y)$ があるとき、

$$x = r\cos\theta, \quad y = r\sin\theta, \quad g(r,\theta) := f(x,y),$$

すなわち、

$$g(r, \theta) := f(r \cos \theta, r \sin \theta).$$

これは
$$\varphi(r,\theta)=\left(egin{array}{c} r\cos\theta \\ r\sin\theta \end{array}
ight)$$
 として、 $g:=f\circ\varphi$ ということ。このとき

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 g}{\partial r^2} + \frac{1}{r} \frac{\partial g}{\partial r} + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2}$$

が成り立つことを示せ。

解答 chain rule と積の微分法により、

$$g_r = f_x x_r + f_y y_r,$$

$$g_{rr} = (f_{xx} x_r + f_{xy} y_r) x_r + f_x x_{rr} + (f_{yx} x_r + f_{yy} y_r) y_r + f_y y_{rr}$$

$$= f_{xx} x_r^2 + (f_{xy} + f_{yx}) x_r y_r + f_{yy} y_r^2 + f_x x_{rr} + f_y y_{rr},$$

$$g_{\theta\theta} = f_{xx} x_\theta^2 + (f_{xy} + f_{yx}) x_\theta y_\theta + f_{yy} y_\theta^2 + f_x x_{\theta\theta} + f_y y_{\theta\theta}.$$

 $x_r = \cos\theta$, $y_r = \sin\theta$, $x_{rr} = 0$, $y_{rr} = 0$, $x_{\theta} = -r\sin\theta$, $y_{\theta} = r\cos\theta$, $x_{\theta\theta} = -r\cos\theta$, $y_{\theta\theta} = -r\sin\theta$ であるから、

$$g_{rr} = f_{xx}\cos^{2}\theta + (f_{xy} + f_{yx})\cos\theta\sin\theta + f_{yy}\sin^{2}\theta,$$

$$\frac{1}{r}g_{r} = \frac{f_{x}\cos\theta}{r} + \frac{f_{y}\sin\theta}{r},$$

$$\frac{1}{r^{2}}f_{\theta\theta} = \frac{1}{r^{2}}\left(f_{xx}r^{2}\cos^{2}\theta - (f_{xy} + f_{yx})r^{2}\sin\theta\cos\theta + f_{yy}r^{2}\cos^{2}\theta - f_{x}r\cos\theta - f_{y}r\sin\theta\right)$$

$$= f_{xx}\cos^{2}\theta - (f_{xy} + f_{yx})\cos\theta\sin\theta + f_{yy}\sin^{2}\theta - \frac{f_{x}\cos\theta}{r} - \frac{f_{y}\sin\theta}{r}.$$

ゆえに

$$g_{rr} + \frac{1}{r}g_r + \frac{1}{r^2}g_{\theta\theta} = f_{xx} + f_{yy}.$$

(後出しの注意: この手の計算では、微分した階数だけの連続的微分可能性 (この場合だと f が C^2 級であること) を仮定するのが普通なので、 $f_{xy}=f_{yx}$ が成り立ち、 $(f_{xy}+f_{yx})=2f_{xy}$ で ある。偏微分の順序交換が成立することを強調する意味で、そうまとめておいた方が良かった かも知れない。この後の計算ではそうしておく。)

応用上は、 $\triangle f = f_{xx} + f_{yy}$ が先にあって、これを g とその偏導関数で表したいので、以下のように計算する方が良いかもしれない。まず x,y についての 1 階偏導関数

$$f_x = g_r r_x + g_\theta \theta_x = g_r \cos \theta - g_\theta \frac{\sin \theta}{r},$$

$$f_y = g_r r_y + g_\theta \theta_y = g_r \sin \theta + g_\theta \frac{\cos \theta}{r}$$

から、

$$\frac{\partial}{\partial x} = \cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta}, \quad \frac{\partial}{\partial y} = \sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r} \frac{\partial}{\partial \theta}.$$

以下は (面倒ではあるが、機械的計算で)

$$f_{xx} = \frac{\partial}{\partial x} f_x = \left(\cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta}\right) \left(g_r \cos\theta - g_\theta \frac{\sin\theta}{r}\right)$$

$$= \cos\theta \frac{\partial}{\partial r} \left(g_r \cos\theta - g_\theta \frac{\sin\theta}{r}\right) - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \left(g_r \cos\theta - g_\theta \frac{\sin\theta}{r}\right)$$

$$= \cos\theta \left(g_{rr} \cos\theta - g_{\theta r} \frac{\sin\theta}{r} - g_\theta \frac{-\sin\theta}{r^2}\right) - \frac{\sin\theta}{r} \left(g_{r\theta} \cos\theta + f_r(-\sin\theta) - g_{\theta\theta} \frac{\sin\theta}{r} - g_\theta \frac{\cos\theta}{r}\right)$$

$$= g_{rr} \cos^2\theta - \frac{2g_{r\theta} \cos\theta \sin\theta}{r} + \frac{g_{\theta\theta} \sin^2\theta}{r^2} + \frac{g_r \sin^2\theta}{r} + \frac{2g_\theta \cos\theta \sin\theta}{r^2}.$$

同様に

$$f_{yy} = g_{rr}\sin^2\theta + \frac{2g_{r\theta}\cos\theta\sin\theta}{r} + \frac{g_{\theta\theta}\cos^2\theta}{r^2} + \frac{g_r\cos^2\theta}{r} - \frac{2g_{\theta}\cos\theta\sin\theta}{r^2}.$$

ゆえに

$$f_{xx} + f_{yy} = g_{rr} + \frac{1}{r}g_r + \frac{1}{r^2}g_{\theta\theta}.\blacksquare$$

注 ちなみに3変数バージョンは

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \frac{\partial^2 g}{\partial r^2} + \frac{2}{r} \frac{\partial g}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2 g}{\partial \theta^2} + \frac{1}{\tan \theta} \frac{\partial g}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2 g}{\partial \phi^2} \right)$$

となり、工夫なしに馬鹿正直に計算すると、1時間半以上かかる (桂田先生調査)。

115. $u: \mathbf{R}^2 \ni (x,t) \mapsto u(x,t) \in \mathbf{R}$ が C^2 級の関数, c が正の定数で、 $\mathbf{R}^2 \perp \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ $((x,t) \in \mathbf{R} \times \mathbf{R})$ が成り立つとする。このとき u(x,t) = f(x-ct) + g(x+ct) を満たす関数 f,g が存在することを示せ。

116. c を正定数、 $F: \mathbf{R} \to \mathbf{R}$ を C^2 級の関数とするとき、u を

$$u(x, y, z, t) = \frac{F(r - ct)}{r}, \quad r = \sqrt{x^2 + y^2 + z^2}$$

$$u_{tt} = c^2 (u_{xx} + u_{yy} + u_{zz}).$$

117. (平面波) $\nu \in \mathbf{R}^n$ は $\|\nu\| = 1$ を満たし、c > 0, $U: \mathbf{R} \to \mathbf{R}$ は C^2 級の関数とするとき、

$$u(x,t) := U(\nu \cdot x - ct) \quad ((x,t) \in \mathbf{R}^n \times \mathbf{R}))$$

で定義される $u: \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$ は、

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x,t) = \triangle u(x,t)$$

を満たすことを示せ。ただし、

$$\nu \cdot x = \sum_{j=1}^{n} \nu_j x_j, \quad \triangle = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}.$$

118. u = u(x, y, z) が調和関数であるとは、 $u_{xx} + u_{yy} + u_{zz} = 0$ を満たすことをいう。

- (1) $f(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}$ により、 $f:\mathbf{R}^3\setminus\{0\}$ を定義するとき、f は調和関数であることを示せ。
- (2) u(x,y,z) が調和関数ならば、

$$v(x,y,z) := \frac{1}{\sqrt{x^2 + y^2 + z^2}} \ u\left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

も調和関数であることを示せ。

- (3) u(x,y,z) が C^3 級の調和関数ならば、 $w(x,y,z):=xu_x(x,y,z)+yu_y(x,y,z)+zu_z(x,y,z)$ も調和関数であることを示せ。
- **119.** C^2 級の関数 $f:(0,\infty)\ni r\mapsto f(r)\in\mathbf{R}$ に対して、 $u:\mathbf{R}^2\setminus\{(0,0)\}\to\mathbf{R}$ を $u(x,y)=f\left(\sqrt{x^2+y^2}\right)$ で定義する。このとき以下の問に答えよ。 (1) u'(x,y) を f を用いて表せ。(2) $\Delta u:=u_{xx}+u_{yy}$ を、f を用いて表せ。(3) u が $\Delta u(x,y)=0$ ($(x,y)\in\mathbf{R}^2\setminus\{(0,0)\}$) を満たしているとき、f を求めよ。

解答 (1) $r=\sqrt{x^2+y^2}$ とおくと、 $r_x=x/\sqrt{x^2+y^2},\,r_y=y/\sqrt{x^2+y^2}.\,\,u(x,y)=f(r)$ であるから、

$$u'(x,y) = (u_x(x,y) \ u_y(x,y)) = (f'(r)r_x \ f'(r)r_y) = \frac{f'\left(\sqrt{x^2 + y^2}\right)}{\sqrt{x^2 + y^2}}(x \ y).$$

(2) (実は第4問を使っても解ける)

$$r_{xx} = \frac{\partial}{\partial x} \left(x(x^2 + y^2)^{-1/2} \right) = 1 \cdot (x^2 + y^2)^{-1/2} + x \cdot (-1/2)(x^2 + y^2)^{-3/2} (2x) = \frac{y^2}{(x^2 + y^2)^{3/2}}$$

であるから、

$$u_{xx} = \frac{\partial}{\partial x} \left(f'(r)r_x \right) = f''(r)r_x \cdot r_x + f'(r) \cdot r_{xx} = f''(r) \frac{x^2}{x^2 + y^2} + f'(r) \frac{y^2}{(x^2 + y^2)^{3/2}}.$$

同様にして

$$u_{yy}(x,y) = f''(r)\frac{y^2}{x^2 + y^2} + f'(r)\frac{x^2}{(x^2 + y^2)^{3/2}}.$$

ゆえに

$$\triangle u(x,y) = f''(r) \frac{x^2 + y^2}{x^2 + y^2} + f'(r) \frac{y^2 + x^2}{(x^2 + y^2)^{3/2}} = f''(r) + \frac{f'(r)}{r} = f''\left(\sqrt{x^2 + y^2}\right) + \frac{f'\left(\sqrt{x^2 + y^2}\right)}{\sqrt{x^2 + y^2}}.$$

$$(3)$$
 $f''(r) + f'(r)/r = 0$ において、 $g(r) = f'(r)$ とおくと、 $g'(r)/g(r) = -1/r$. 積分して

$$\log |g(r)| = -\log r + C$$
 (C は任意定数)

 $C = \log C'$ とおくと、C' は正の任意定数で、 $\log |g(r)| = \log (C'/r)$. ゆえに $g(r) = \pm C'/r = C''/r$ (C'' は任意定数). これから $f(r) = A \log r + B$ (A, B は任意定数)。 ■

- **120.** C^2 級の関数 $f:(0,\infty)\to \mathbf{R}$ が与えられたとき、 $u:\mathbf{R}^3\setminus\{(0,0,0)\}\to\mathbf{R}$ を $u(x,y,z):=f(\sqrt{x^2+y^2+z^2})$ で定める。このとき、以下の間に答えよ。
- (1) ∇u を f を用いて表せ。(2) $\triangle u := u_{xx} + u_{yy} + u_{zz}$ を f を用いて表せ。(3) u が $\triangle u(x,y,z) = 0$ $((x,y,z) \neq (0,0,0))$ を満たしているならば、実は u は次の形をしていることを示せ。

$$u(x,y,z) = \frac{C}{\sqrt{x^2 + y^2 + z^2}} + D$$
 (C, D は定数).