5.12 整数 (素因数分解、素数判定)

整数に関する演算
n=2^2^5+1 $ n=2^{2^5}+1=4294967297$
  $ 2^{2^5}$ $ 2^{(2^5)}=2^{32}$ という意味です ( $ (2^2)^5
=2^{10}$ ではない)。
PrimeQ[n] $ n$ は素数かどうか判定する
  素数は英語で prime という。`Q' は Question の頭文字。
EvenQ[n] $ n$ は偶数かどうか判定する
  偶数は英語で even number という。
OddQ[n] $ n$ は奇数かどうか判定する
  偶数は英語で odd number という。
FactorInteger[n] $ n$ の素因数分解
641 6700417 掛け算してみる
Remove[n] おそうじ
Mod[123456,123] 123456123 で割った余り
GCD[96,18] 最大公約数
Table[Prime[n],{n,100}] 最初の100個の素数
Divisors[48] $ 48$ の約数全体

桂田 祐史
2018-10-12