2014 年度 数理リテラシー 期末試験問題

2014年7月30日 (水曜)13:00~15:00施行, 担当 桂田 祐史 ノート等持ち込み禁止, 解答用紙 (2枚) のみ提出

- 1. 次の各文を記号のみを用いて表せ。
- (1) 「p ならば q」の否定は、「p であるが q でない」である。 (2) i は複素数であり、実数ではない。 (3) A と B の共通部分が A に等しければ、B は A を含む。 (4) x が A と B の合併集合 (和集合) の要素であるためには、x が A の要素であるか、または、x が B の要素であることが必要十分である。 (5) どんな実数 x よりも大きいような実数 y は存在しない。
- **2.** (1) 命題論理のド・モルガン律 $\neg(p \land q) \equiv (\neg p) \lor (\neg q), \neg(p \lor q) \equiv (\neg p) \land (\neg q)$ を真理値表を用いて証明 せよ。(2) $p \Rightarrow q$ とその対偶の真偽は一致することを示せ。
- **3.** (1) アルキメデスの公理 $(\forall a>0)$ $(\forall b>0)$ $(\exists n\in\mathbb{N})$ na>b の否定を書け。(2) 反例とは何か、量称記号 \forall , \exists を用いて説明せよ。
- 4. (1) 以下の言葉の定義を述べよ ((b)~(e) は二つの集合に関するものを答えよ)。
- (a) 部分集合 (b) 和集合 (c) 共通部分 (d) 差集合 (e) 直積集合 (f) ベキ集合
- (2) $A = \{b, c, d\}$, $B = \{a, b, c\}$ とするとき、 $A \cap B$, $A \cup B$, $A \times B$, 2^A , $A \setminus B$ を外延的に (つまり要素をすべて書き並べる方法で) 表せ。(注意: $A \setminus B$ については場合分けが必要である。)
- **5.** 集合 X の任意の部分集合 A, B に対して、 $A \cap B = \emptyset \Leftrightarrow A \subset B^c$ が成り立つことを証明せよ ($B^c = X \setminus B$ である)。
- **6.** (1) 集合族 $\{A_n\}_{n\in\mathbb{N}}$ の和集合 $\bigcup_{n\in\mathbb{N}}A_n$, 共通部分 $\bigcap_{n\in\mathbb{N}}A_n$ の定義を書け。 (2) すべての自然数 n に対して、

$$A_n := \left(0, \frac{1}{2} - \frac{1}{4n}\right] \cup \left\lceil \frac{1}{2} + \frac{1}{4n}, 1 \right) = \left\{x \in \mathbb{R} \;\middle|\; 0 < x \leq \frac{1}{2} - \frac{1}{4n} \;\; \text{\sharp $\%$ it $\frac{1}{2} + \frac{1}{4n} \leq x < 1$} \right\}$$

とおくとき、 $\bigcap_{n\in\mathbb{N}}A_n$ 、 $\bigcup_{n\in\mathbb{N}}A_n$ を簡単な式で表せ。 (3) (2) の結果を証明せよ。

- 7. (1) 写像が全射であることの定義を述べ、全射な写像の例をあげよ。 (2) 写像が単射であることの定義を述べ、単射な写像の例をあげよ。 (3) $f\colon X\to Y, g\colon Y\to Z$ とするとき、以下の (a), (b) を証明し、(c) の反例を書け。 (a) f と g が単射であれば $g\circ f$ も単射である。 (b) $g\circ f$ が単射であれば f も単射である。 (c) $g\circ f$ が単射であれば g も単射である。
- 8. 関数 $f(x) = \frac{1}{x^4 1}$ の定義域 X を高校数学ルールで定めるとき (終域は \mathbb{R} , つまり $f: X \to \mathbb{R}$ とする)、 $f(X), f^{-1}(\mathbb{R}), f(\emptyset), f^{-1}(\emptyset), f(\{0\}), f(\{2\}), f^{-1}(\{0\}), f^{-1}(\{2\})$ を求めよ。
- 9. $f: X \to Y$ とする。(1) X の部分集合 A の f による像 f(A), Y の部分集合 B の f による逆像 $f^{-1}(B)$ の定義を記せ。(2) $B_1, B_2 \subset Y$ とするとき、 $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$ を証明せよ。(3) $A_1, A_2 \subset X$ とするとき、 $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ を証明せよ。(4) $A \subset X$, $B \subset Y$ とするとき、 $f(A \cap f^{-1}(B)) = f(A) \cap B$ を証明せよ。
- **10.** (1) $\mathbb Z$ 上の二項関係 \sim を、 $a\sim b\Leftrightarrow a-b$ は 3 の倍数,と定めるとき、 \sim は $\mathbb Z$ 上の同値関係であることを示せ
- (2) 空でない集合 X 上の同値関係 \sim があるとき、 $x \in X$ の (\sim に関する) 同値類を C(x) を書くことにする。(a) C(x) の定義を書け。(b) $x,y \in X$ とするとき、 $C(x) \cap C(y) \neq \emptyset \Leftrightarrow C(x) = C(y)$ を示せ。

解答と解説

1. $(1) \neg (p \Rightarrow q) \equiv p \land \neg q$ $(2) \ i \in \mathbb{C} \land i \notin \mathbb{R}$ $(3) \ A \cap B = A \Rightarrow B \supset A$ $(4) \ x \in A \cup B \Leftrightarrow x \in A \lor x \in B$ $(5) \neg ((\exists y \in \mathbb{R})(\forall x \in \mathbb{R}) \ y > x)$

解説 (5) の出来が今一つだった。 $(\forall x \in \mathbb{R})$ $(\exists y \in \mathbb{R})$ y > x は、「任意の実数 x に対して、y より大きい実数 y が存在する」あるいは「任意の実数 x に対して、ある実数 y が存在して y > x」であり、「任意の実数 x よりも大きいような実数 y が存在する」は $(\exists y \in \mathbb{R})$ $(\forall x \in \mathbb{R})$ y > x である。

2. (1) 真理値表は

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$
Τ	Т	Т	F	F	F	F
Τ	F	F	${ m T}$	F	Τ	${ m T}$
F	Т	F	${ m T}$	Τ	F	${ m T}$
F	F	F	${ m T}$	${ m T}$	Τ	${ m T}$

ſ	p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$(\neg p) \wedge (\neg q)$
	Τ	Τ	${ m T}$	F	F	F	F
	Τ	F	${ m T}$	F	F	Т	\mathbf{F}
	F	Τ	${ m T}$	F	Τ	F	\mathbf{F}
	F	F	F	${ m T}$	${ m T}$	Γ	${ m T}$

となり、どちらの表も、4列目と7列目の真理値が一致するので

$$\neg (p \land q) \equiv (\neg p) \lor (\neg q), \quad \neg (p \lor q) \equiv (\neg p) \land (\neg q).$$

(2) $p \Rightarrow q$ とその対偶 $(\neg q) \Rightarrow (\neg p)$ の真理値表は

p	q	$p \Rightarrow q$	$\neg q$	$\neg p$	$(\neg q) \Rightarrow (\neg p)$
Т	Τ	Т	F	F	T
Т	F	F	Τ	F	\mathbf{F}
F	Τ	${ m T}$	\mathbf{F}	Τ	${ m T}$
F	F	${ m T}$	${ m T}$	Τ	${ m T}$

となるので、 $p \Rightarrow q \equiv (\neg q) \Rightarrow (\neg p)$.

(別解) $p \Rightarrow q \equiv \neg p \lor q$ であるから、

$$(\neg q) \Rightarrow (\neg p) \equiv \neg \neg q \vee \neg p \equiv q \vee \neg p \equiv \neg p \vee q \equiv p \Rightarrow q.$$

3. (1) ($\exists a > 0$) ($\exists b > 0$) ($\forall n \in \mathbb{N}$) $na \leq b$ (2) ($\forall x)P(x)$ という命題に対して、 $\neg P(x)$ が真となる x のことを反例と呼ぶ。反例が見つかった場合、($\exists x$) $\neg P(x)$ が真であるが、この命題はもとの命題の否定 $\neg ((\forall x)P(x))$ と同値であるので、もとの命題が偽であることを示している。 ■

4. (1)

- (a) 集合 A, B に対して、 $(\forall x)$ $(x \in A \Rightarrow x \in B)$ が成り立つとき、A は B の部分集合であるという。
- (b) 集合 A, B に対して、 $A \cup B := \{x \mid x \in A \lor x \in B\}$ を $A \in B$ の和集合という。
- (c) 集合 A, B に対して、 $A \cap B := \{x \mid x \in A \land x \in B\}$ を A と B の共通部分という。
- (d) 集合 A, B に対して、 $A \setminus B := \{x \mid x \in A \land x \notin B\}$ を A と B の差集合という。
- (e) 集合 A, B に対して、 $A \times B := \{(x,y) \mid x \in A \land x \in B\}$ を A と B の直積集合という。ここで (x,y) は x と y の順序対を表す。
- (f) 集合 A に対して、A の部分集合全体の集合 $2^A := \{X \mid X \subset A\}$ を A の冪集合という。
- (2) $A \cap B = \{b, c\}, A \cup B = \{a, b, c, d\}, A \times B = \{(b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, a), (d, b), (d, c)\}, 2^A = \{\emptyset, \{b\}, \{c\}, \{d\}, \{b, c\}, \{c, d\}, \{b, c\}, \{b, c, d\}\},$

$$A \setminus B = \begin{cases} \{d\} & (d \notin \{a, b, c\} \ \mathcal{O} \ \succeq \ \mathcal{E}) \\ \emptyset & (d \in \{a, b, c\} \ \mathcal{O} \ \succeq \ \mathcal{E}) \end{cases}$$

解説 (1)(a) の出来が非常に悪かった。B の部分集合というのは、B が空集合でもない限り、一つには定まらない。普通は二つの集合の関係 (「包含関係」) として定義される。それなのに部分集合を (b) 以降と同様に、集合の内包的定義で書こうとした人がいた (書けるわけがない)。(a) の答を、念のため、他の形でも書いておく。

- (日本語による説明) 「A が B の部分集合であるとは、A の任意の要素がB の要素であることをいう。」、 「A の任意の要素がB の要素であるとき、A は B の部分集合である、あるいは A は B に含まれる、B は A を含む、という。」
- (条件を書いて定義) A が B の部分集合 $\stackrel{\text{def.}}{\Leftrightarrow}$ $(\forall x)$ $(x \in A \Rightarrow x \in B)$.
- **5.** $A \cap B = \emptyset$ と仮定する。 $x \in A$ とするとき、 $x \notin B$ が成り立つ。実際、もしも成り立たなかった場合、 $x \in B$ より $x \in A \cap B$ であるから $A \cap B \neq \emptyset$ となり、これは仮定に矛盾する。

逆に $A \subset B^c$ と仮定する。このとき $A \cap B = \emptyset$ が成り立つ。実際、もしも成り立たなかった場合、 $\exists x \in A \cap B$. これは $x \in A \land x \in B$ を意味するが、 $x \in A$ と仮定 $A \subset B^c$ から $x \in B^c$. すなわち $x \notin B$. これは $x \in B$ と矛盾する。■

6.

$$(1) \bigcup_{n \in \mathbb{N}} A_n = \{ x \mid (\exists n \in \mathbb{N}) x \in A_n \}, \bigcap_{n \in \mathbb{N}} A_n = \{ x \mid (\forall n \in \mathbb{N}) x \in A_n \}.$$

$$(2) \bigcap_{n \in \mathbb{N}} A_n = A_1 = \left(0, \frac{1}{4}\right] \cup \left[\frac{3}{4}, 1\right), \bigcup_{n \in \mathbb{N}} A_n = \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right) = (0, 1) \setminus \{1/2\}.$$

- $(3) \ a_n := \frac{1}{2} \frac{1}{4n}, \ b_n := \frac{1}{2} + \frac{1}{4n} \ \text{ とおく、} \{a_n\} \ \text{は狭義単調増加数列、} \{b_n\} \ \text{は狭義単調減少数列、} \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{1}{2} \ \text{が成り立つ。} \ A_n = (0,a_n] \cup [b_n,1) \ \text{であるから、} (\forall n \in \mathbb{N}) \ A_n \subset A_{n+1}.$
 - (a) $\bigcap_{n\in\mathbb{N}}A_n=A_1$ の証明: 集合族の共通部分の定義から、 $\bigcap_{n\in\mathbb{N}}A_n\subset A_1$ が一般に成り立つ (実際 $x\in\bigcap_{n\in\mathbb{N}}A_n$ ならば、 $\forall n\in\mathbb{N}$ $x\in A_n$ であるから、特に n=1 として $x\in A_1$)。 $x\in A_1$ とすると、任意の $n\in\mathbb{N}$ に対して、上に述べたことから $A_1\subset A_2\subset\cdots\subset A_n$ であるから、 $x\in A_n$. ゆえに $x\in\bigcap_{n\in\mathbb{N}}A_n$. ゆえに $A_1\subset\bigcap_{n\in\mathbb{N}}A_n$.
 - (b) $\bigcup_{n\in\mathbb{N}} A_n = (0,1/2) \cup (1/2,1)$ の証明: $\forall n\in\mathbb{N}$ に対して $A_n\subset (0,1/2)\cup (1/2,1)$ であるから、 $\bigcup_{n\in\mathbb{N}} A_n\subset (0,1/2)\cup (1/2,1)$. $x\in (0,1/2)\cup (1/2,1)$ とすると、 $x\in (0,1/2)$ または $x\in (1/2,1)$. 前者の場合、 $\varepsilon:=1/2-x$ とおくと、 $\varepsilon>0$. アルキメデスの公理から、 $(\exists N\in\mathbb{N})$ $N\varepsilon>1$. ゆえに $\frac{1}{N}<\varepsilon$. $0< x=\frac{1}{2}-\varepsilon<\frac{1}{2}-\frac{1}{4N}=a_N$ であるから、 $x\in (0,a_N)\subset A_N$. 後者の場合も、 $\varepsilon:=x-1/2$ とおくと、 $\varepsilon>0$ で、アルキメデス の公理から $(\exists N\in\mathbb{N})$ $\frac{1}{N}<\varepsilon$. $\frac{1}{2}< x<\frac{1}{2}+\frac{1}{4N}=b_N$ であるから $x\in (1/2,b_N)\subset A_N$. ゆえに $x\in\bigcup_{n\in\mathbb{N}} A_n$.

7.

- (1) $f: X \to Y$ とするとき、f が全射であるとは、 $(\forall y \in Y)$ $(\exists x \in X)$ y = f(x) が成り立つことをいう。
- (2) $f: X \to Y$ とするとき、f が単射であるとは、 $(\forall x, x' \in X)$ $x \neq x' \Rightarrow f(x) \neq f(x')$ が成り立つことをいう。

- (3) (a) $f: X \to Y, g: Y \to Z$ がともに単射と仮定する。 $x, x' \in X, x \neq x'$ とすると、f が単射であることから、 $f(x) \neq f(x')$. g が単射であることから $g(f(x)) \neq g(f(x'))$. すなわち $g \circ f(x) \neq g \circ f(x')$. これは $g \circ f$ が単射であることを示している。
 - (b) $g \circ f: X \to Z$ が単射と仮定する。 $x, x' \in X, x \neq x'$ とするとき、 $f(x) \neq f(x')$ である (実際、もしも f(x) = f(x') となったと仮定すると、 $g \circ f(x) = g(f(x)) = g(f(x')) = g \circ f(x')$ となり、 $g \circ f$ が 単射であることに矛盾する)。ゆえに f は単射である。
- (4) $X = \{1\}, Y = \{1, -1\}, Z = \{1\}, f: X \to Y, g: Y \to Z, f(1) = 1, g(1) = 1, g(-1) = 1$ とするとき、 $g \circ f: X \to Z, g \circ f(1) = 1$ であり、 $g \circ f$ は単射であるが、g は単射ではない。

解説

- (i) (2) で ⇒ を書かずに \land やコンマ , を書く人が少なくない。 \land と ⇒ はまったく違うことに注意すること。 ($\exists x: P(x)$) Q(x) は ($\exists x$) $P(x) \land Q(x)$ であるが、($\forall x: P(x)$) Q(x) は ($\forall x$) $P(x) \Rightarrow Q(x)$ である。その辺と混同しているのだろうか。
- (ii) $f: X \to Y$ が単射であることは、 $(\forall x, x')$ $f(x) = f(x') \Rightarrow x = x'$ とも表せる。こちらを使っても構わない。その場合の (3)(a) の証明は、

 $f\colon X\to Y,\,g\colon Y\to Z$ がともに単射と仮定する。 $x,x'\in X,\,g\circ f(x)=g\circ f(x')$ とすると、合成写像の定義によって $g(f(x))=g(f(x')).\,g$ が単射であることから、 $f(x)=f(x').\,f$ が単射であることから、 $x=x'.\,$ ゆえに $g\circ f$ は単射である。

また (3)(b) の証明は、

 $g\circ f\colon X\to Z$ が単射と仮定する。 $x,x'\in X,\ f(x)=f(x')$ とする。 $g\circ f(x)=g(f(x))=g(f(x'))=g\circ f(x')$ であるから、 $g\circ f$ が単射であることから x=x'. ゆえに f は単射である。

8. $x^4-1=(x^2+1)(x+1)(x-1)$ より、 $x^4-1=0 \Leftrightarrow x=\pm 1$ であるから、X は ± 1 を除外して $X=\mathbb{R}\setminus\{1,-1\}=(-\infty,-1)\cup(-1,1)\cup(1,\infty)$. 高校数学で f のグラフを描いて、 $f(X)=(-\infty,-1]\cup(0,\infty)$.

$$\begin{split} f^{-1}(\mathbb{R}) &= X, \\ f(\emptyset) &= \emptyset, \quad f^{-1}(\emptyset) = \emptyset, \\ f\left(\{0\}\right) &= \{f(0)\} = \{-1\}, \quad f\left(\{2\}\right) = \{f(2)\} = \left\{\frac{1}{15}\right\}. \end{split}$$

$$(\forall x \in X) \ f(x) \neq 0$$
 であるから、 $f^{-1}\left(\{0\}\right) = \emptyset$.
$$f(x) = 2 \Leftrightarrow x^4 - 1 = \frac{1}{2} \Leftrightarrow x^2 = \sqrt{\frac{3}{2}} \Leftrightarrow x = \pm \sqrt[4]{\frac{3}{2}}$$
 であるから、 $f^{-1}\left(\{2\}\right) = \left\{\sqrt[4]{\frac{3}{2}}, -\sqrt[4]{\frac{3}{2}}\right\}$.

解説 問題に応じて、考える必要があるのは X と f(X) を求めるときであろうか。この問題は、f(X) を求めるのが難しい (もう少し簡単な関数にすべきだったろうか?)。この手の問題を解いてみせるとき、必ずグラフを描くことにしているが、グラフを描くのをさぼる人が多い。なるべく描くようにしよう。

 $f: X \to Y$ に対して、一般に $f^{-1}(Y) = X$, $f(\emptyset) = \emptyset$, $f^{-1}(\emptyset) = \emptyset$, $f(\{a\}) = \{f(a)\}$ であるので (これらは 授業で証明してある…もっとも暗記して使うよりは、自分で証明して使えるのが本当だが)、半数以上は機械 的に求まる。 $f^{-1}(\{b\})$ は f(x) = b の解全体である。

9.

(1) $f(A) = \{y \in Y \mid (\exists x \in A)y = f(x)\}, f^{-1}(B) = \{x \in X \mid f(x) \in B\}.$ (省略形の $f(A) = \{f(x) \mid x \in A\}$ でも可。(3) の証明をするときなどは、省略形でない方を思い出す必要がある。)

(2) 任意の $x \in X$ に対して

$$x \in f^{-1}(B_1 \cap B_2) \Leftrightarrow f(x) \in B_1 \cap B_2$$

$$\Leftrightarrow f(x) \in B_1 \wedge f(x) \in \cap B_2$$

$$\Leftrightarrow x \in f^{-1}(B_1) \wedge x \in f^{-1}(B_2)$$

$$\Leftrightarrow x \in f^{-1}(B_1) \cap f^{-1}(B_2)$$

であるから $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

(3) $y \in f(A_1 \cup A_2)$ と仮定すると、 $(\exists x \in A_1 \cup A_2) \ y = f(x)$. $x \in A_1$ または $x \in A_2$ である。 $x \in A_1$ のときは $y \in f(A_1)$, $x \in A_2$ のときは $y \in f(A_2)$ であるから、つねに $y \in f(A_1) \cup f(A_2)$. ゆえに $f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)$.

逆に $f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$ である。実際、 $A_1 \subset A_1 \cup A_2$ から $f(A_1) \subset f(A_1 \cup A_2)$. 同様に $A_2 \subset A_1 \cup A_2$ から $f(A_2) \subset f(A_1 \cup A_2)$. ゆえに $f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$.

以上から $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

(あまり勧められない別証)

$$y \in f(A_1 \cup A_2) \Leftrightarrow (\exists x \in A_1 \cup A_2)y = f(x)$$

$$\Leftrightarrow (\exists x) \left[(x \in A_1 \cup A_2) \land y = f(x) \right]$$

$$\Leftrightarrow (\exists x) \left[(x \in A_1 \lor x \in A_2) \land y = f(x) \right]$$

$$\Leftrightarrow (\exists x) \left[(x \in A_1 \land y = f(x)) \lor (x \in A_2 \land y = f(x)) \right]$$

$$\Leftrightarrow (\exists x_1)(x_1 \in A_1 \land y = f(x_1)) \lor (\exists x_2)(x_2 \in A_2 \land y = f(x_2))$$

$$\Leftrightarrow y \in f(A_1) \lor y \in f(A_2)$$

$$\Leftrightarrow y \in f(A_1) \cup f(A_2).$$

(実はこう書かれた場合、書いた人が本当に理解しているかどうか、採点者として少なからぬ不安がある。)

注意 集合が等しいこと A=B の証明は、 $(\forall x)[x\in A\Rightarrow x\in B]$ と $(\forall x)[x\in B\Rightarrow x\in A]$ を証明するのが基本である、と言ってあるが、上の最初の解答例のようにした人は少なく、別証の出来そこないバージョンを書いて沈没した人が多かった。別証は途中で $(\exists x)P(x)\vee Q(x)\equiv (\exists x_1)P(x_1)\vee (\exists x_2)Q(x_2)$ という定理を用いている。 \vee でなく \wedge の場合は、 \equiv でなく \Rightarrow に弱めた $[(\exists x)P(x)\wedge Q(x)]\Rightarrow [(\exists x_1)P(x_1)\wedge (\exists x_2)Q(x_2)]$ しか成り立たないことに注意する。この違いを理解するために $f(A_1\cap A_2)\subset f(A_1)\cap f(A_2)$ を証明してみることを勧める。

10.

- (1) 反射律、対称律、推移律が成り立つことを示す。
 - $a \in \mathbb{Z}$ とするとき、 $a a = 0 = 3 \cdot 0, 0 \in \mathbb{Z}$ であるから、 $a \sim a$.
 - $a,b \in \mathbb{Z}$, $a \sim b$ とすると、 $(\exists m \in \mathbb{Z})$ a-b=3m. このとき b-a=-3m=3(-m), $-m \in \mathbb{Z}$ であるから $b \sim a$.
 - $a, b, c \in \mathbb{Z}$, $a \sim b$, $b \sim c$ とすると、 $(\exists m, n \in \mathbb{Z})$ a b = 3m, b c = 3n. このとぎ a c = (a b) + (b c) = 3m + 3n = 3(m + n), $m + n \in \mathbb{Z}$ であるから $a \sim c$.

以上から~は Z上の同値関係である。

- (2) $C(x) = \{ y \in \mathbb{Z} \mid y \sim x \}.$
- (3) (⇒ の証明) $C(x) \cap C(y) \neq \emptyset$ とすると、(∃ $z \in \mathbb{Z}$) $z \in C(x) \cap C(y)$. このとき、 $z \sim x$ かつ $z \sim y$. 対称 律と推移律より $x \sim y$. $w \in C(x)$ とすると、 $w \sim x$ であるから、 $w \sim y$. ゆえに $y \in C(y)$ であるから、 $C(x) \subset C(y)$. $x \ge y$ を入れ替えても良いので $C(y) \subset C(x)$ が示せるので、C(x) = C(y).

(
$$\leftarrow$$
の証明) $C(x) = C(y)$ とすると、 $C(x) \cap C(y) = C(x) \neq \emptyset$ $(x \in C(x))$ であるから). \blacksquare

解説. 実は (1) の出来が非常に悪かった。その原因は、山をはって事前に「解答」が出回ったが、それが間違っていて、それをコピーしたからだ、と想像している。例えば対称律の証明の書き出しが「a-b=3m ($m\in\mathbb{Z}$) とする。」となっていたりする。それでどうして「 $a\sim b$ ならば $b\sim a$ 」の証明になるのだろう?証明の書き出しは、仮定を書くのが普通であるし、仮定を書くのを省略するにしても「 \sim の定義から ($\exists m\in\mathbb{Z}$) a-b=3m が成り立つ。」とすべきで「 \sim とする。」ではないはずである。