多変数の微分積分学 1 練習問題 No.3 (2013年4月29日出題, 月 日提出)

年16組	番	氏名	
------	---	----	--

問3 \mathbf{R}^2 における次の各集合について、(a) 図示できる場合は図示せよ, (b) 開集合である場合は証明せよ, (c) 閉集合である場合は証明せよ 1 。

- (1) \emptyset (2) \mathbf{R}^2 (3) $\{(0,0)\}$ (4) $\{(0,0),(1,1)\}$ (5) $(1,2) \times (3,4)$ (6) $[1,2] \times (3,4)$
- (7) $[1,2] \times [3,4]$ (8) $\{(x,y); 5 < x^2 + y^2 < 6\}$ (9) $(0,\infty) \times (0,\infty)$ (10) $\{(x,y); x^3 \le y \le x^2\}$ (11) $\mathbf{R}^2 \setminus \{(0,0)\}.$

¹開集合、または閉集合である場合、本日の講義で説明したやり方を使って証明できる。そうでない場合はその証明をするため、定義に戻ったりする必要があるが、それは今回要求しない。

次の命題を用いる。

命題 3.2 (1) \emptyset と \mathbf{R}^n は \mathbf{R}^n の開集合である。(2) U_{λ} ($\lambda \in \Lambda$) が \mathbf{R}^n の開集合ならば、 $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ は \mathbf{R}^n の開集合である。(3) U_1 と U_2 が \mathbf{R}^n の開集合ならば、 $U_1 \cap U_2$ は \mathbf{R}^n の開集合である。

命題 3.3 (1) \emptyset と \mathbf{R}^n は \mathbf{R}^n の閉集合である。(2) F_{λ} ($\lambda \in \Lambda$) が \mathbf{R}^n の閉集合ならば、 \bigcap F_{λ} は \mathbf{R}^n の閉集合である。(3) F_1 と F_2 が \mathbf{R}^n の閉集合ならば、 $F_1 \cup F_2$ は \mathbf{R}^n の閉集合である。

命題 3.4 $f: \mathbf{R}^n \to \mathbf{R}$ が連続, $a, b, c \in \mathbf{R}$ のとき、次の (1),(2) が成立する。

- (1) $U_1 = \{x \in \mathbf{R}^n; f(x) > a\}, U_2 = \{x \in \mathbf{R}^n; f(x) < b\}, U_3 = \{x \in \mathbf{R}^n; a < f(x) < b\}, U_4 = \{x \in \mathbf{R}^n; f(x) \neq c\}$ は \mathbf{R}^n の開集合である。
- (2) $F_1 = \{x \in \mathbf{R}^n; f(x) \ge a\}, F_2 = \{x \in \mathbf{R}^n; f(x) \le b\}, F_3 = \{x \in \mathbf{R}^n; a \le f(x) \le b\}, F_4 = \{x \in \mathbf{R}^n; f(x) = c\}$ は \mathbf{R}^n の閉集合である。

略解 すみませんが、図を描くのは省略させてもらいます(だれか描いてくれないかなあ)。

- (1) \emptyset は \mathbf{R}^2 の開集合であり、 \mathbf{R}^2 の閉集合でもある。これは**命題 3.3**, **3.4** で済んでいる。
- (2) \mathbf{R}^2 は \mathbf{R}^2 の開集合であり、 \mathbf{R}^2 の閉集合でもある。これは**命題 3.3**, **3.4** で済んでいる。
- (3) $\{(0,0)\}$ は \mathbf{R}^2 の閉集合である。一般に $\forall a \in \mathbf{R}^n$ に対して、 $A = \{a\}$ は \mathbf{R}^n の閉集合である。実際、 $f \colon \mathbf{R}^n \ni x \mapsto \|x a\|^2 = \sum_{j=1}^n (x_j a_j)^2 \in \mathbf{R}$ は、多項式関数であるから、 \mathbf{R}^n 上の連続関数で、 $A = \{x \in \mathbf{R}^n; f(x) = 0\}$ は **命題 3.4** (2) により \mathbf{R}^n の閉集合である。あるいは、

$$A = \bigcap_{j=1}^{n} F_j, \quad F_j := \{ x \in \mathbf{R}^n; x_j = a_j \}$$

と書き直して、各 F_j が **命題 3.4** (2) により \mathbf{R}^n の閉集合であること、それと **命題 3.2** (2) を使う、ということも出来る。

あるいは、閉球 $\overline{B}(a;r)$ で a=(0,0), r=0 としても良い。

- (4) 前問から、 $A_1 = \{(0,0)\}, A_2 = \{(1,1)\}$ は \mathbf{R}^2 の閉集合である。**命題 3.4** (3) を使えば $A = A_1 \cup A_2$ も \mathbf{R}^2 の閉集合である。
- (5) 閉集合ではないが、開集合である。 $A := (1,2) \times (3,4) = U_1 \cap U_2, U_1 := \{(x,y) \in \mathbf{R}^2; 1 < x < 2\}, U_2 := \{(x,y) \in \mathbf{R}^2; 3 < y < 4\}.$ **命題 3.4** (1) を使えば U_1 と U_2 が \mathbf{R}^2 の開集合であることが分かり、**命題 3.2** (3) を使えば A が \mathbf{R}^2 の開集合であることが分かる。
- (6) $[1,2] \times (3,4)$ は \mathbf{R}^2 の開集合でもないし、 \mathbf{R}^2 の閉集合でもない。

- (7) $A = [1,2] \times [3,4]$ は \mathbf{R}^2 の開集合ではないが、 \mathbf{R}^2 の閉集合である。実際 $F_1 := \{(x,y) \in \mathbf{R}^2; 1 \le x \le 2\}$, $F_2 := \{(x,y) \in \mathbf{R}^2; 3 \le y \le 4\}$ とおくと、 $A = F_1 \cap F_2$ で、**命題 3.4** (2) を使えば F_1 と F_2 が \mathbf{R}^2 の閉集合であることが分かるので、**命題 3.3** (2) を使えば A が \mathbf{R}^2 の閉集合であることが分かる。
- (8) $A = \{(x,y) \in \mathbf{R}^2; 5 < x^2 + y^2 < 6\}$ は \mathbf{R}^2 の開集合である。 $f(x,y) := x^2 + y^2$ ($(x,y) \in \mathbf{R}^2$), a = 5, b = 6 とおくと、f(x,y) は x,y の多項式で、 $f \colon \mathbf{R}^2 \to \mathbf{R}$ は連続関数であり、 $A = \{(x,y) \in \mathbf{R}^2; a < f(x,y) < b\}$ と書けるので、**命題 3.4** (1) を使えば A が \mathbf{R}^2 の開集合であることが分かる。
- (9) $A = (0, \infty) \times (0, \infty)$ は \mathbf{R}^2 の開集合である。 $U_1 := \{(x, y) \in \mathbf{R}^2; x > 0\}$, $U_2 := \{(x, y) \in \mathbf{R}^2; y > 0\}$ とおくと、 U_1 と U_2 は **命題 3.4** (1) より \mathbf{R}^2 の開集合である。そして $A = U_1 \cap U_2$ であるから、**命題 3.2** (3) より A は \mathbf{R}^2 の開集合である。
- (10) $A = \{(x,y) \in \mathbf{R}^2; x^3 \le y \le x^2\}$ は \mathbf{R}^2 の閉集合である。 $f_1(x,y) := y x^3, f_2(x,y) := y x^2,$ $F_1 := \{(x,y) \in \mathbf{R}^2; f_1(x,y) \ge 0\}, F_2 := \{(x,y) \in \mathbf{R}^2; f_2(x,y) \le 0\}$ とおくと、 F_1 と F_2 は 命題 3.4(2)より \mathbf{R}^2 の閉集合である。また $A = F_1 \cap F_2$ であるから、命題 3.3(2)より A は \mathbf{R}^2 の閉集合である。
- (11) $A = \mathbf{R}^2 \setminus \{(0,0)\}$ は \mathbf{R}^2 の開集合である。実際、 $f \colon \mathbf{R}^2 \ni (x,y) \mapsto x^2 + y^2 \in \mathbf{R}$ は連続関数で、 $A = \{(x,y) \in \mathbf{R}^2; f(x,y) > 0\}$ であるから、**命題 3.4** (1) より A は \mathbf{R}^2 の開集合である。■