応用数値解析特論 第13回

~有限要素法の理論的背景~

かつらだ まさし 桂田 祐史

http://nalab.mind.meiji.ac.jp/~mk/ana/

2021年12月20日

目次

- 1 本日の講義内容、連絡事項
- ② 有限要素法の理論的背景
 - 概観
 - 弱解の一意存在
 - まず結論
 - 関数解析から
 - Riesz の表現定理
 - Lax-Milgram の定理
 - Stampacchia の定理
 - 弱解の滑らかさ
 - $f = -\triangle u$ が滑らかならば u も滑らか
 - Sobolev の埋蔵定理
 - 有限要素解の誤差評価
 - 方針
 - ●1次元の場合の誤差評価
 - 2 次元の場合の誤差評価
 - まとめ
- ③ 参考文献

本日の講義内容、連絡事項

次回は最終回である。

今回は、有限要素法の理論的背景について解説する。参考書としては、和書ではまず菊地 [1], それから田端 [2], 洋書に目を向けると Brenner-Scott [3] があげられる。

偏微分方程式の関数解析的な取り扱いの勉強も必要になる。定番本であるが、やはり Brezis [4], Evans [5] が頼りになる。

有限要素法をどのように学ぶか

有限要素法についての半期の講義科目の内容をどのようにするか、折に触れ考え続けている。

「数値計算は総合技術」という言葉があるように、1つの数値計算を行うために、非常に多くのものが必要になる(微分方程式の理解、離散化アルゴリズム、線形演算・数値積分・関数近似などの基本的な問題を解くためのアルゴリズム、プログラミング言語とコーディング・テクニック、可視化ソフトウェア、計算に用いるシステムの理解、数値計算結果をどのように記録・保存するか、…)。それらすべてを自分で理解して用意するのは困難であり、また必要もないことであろう。しかし、どのように向き合えば良いだろうか。普段は抽象度の高いところで理解・考察し、必要に応じて低い層に降りて検討する、というやり方をすべきである、と考えている。

車の運転にたとえて論じられることもある。創成期は車の運転をする人は内部構造を良く理解していたが、それは必要なくなり、今では運転前にボンネットを開けることをしない人も多い。もうエンジンについて理解したりする必要はないのではないか。それはそうなのかもしれない…しかし、車の運転の場合は(目的地まで安全かつ迅速かつ快適に到着したか)効果・結果がはっきり見えるが、数値計算の場合は結果の良し悪しがすぐには分からないことは注意すべきである。

有限要素法をどのように学ぶか

数理モデルによく現れる数値計算法であるから、実用性は重要である。 しかし実用性とは何か真剣に考えないと(ちゃんと評価している?)、単なる事例収集になってしまう可能性がある。なぜそれで結果が得られるのか、得られた結果がどれくらい信用できるのか、そもそもその方法を採用するのは正しいのか、分からないままになる危険性がある。

定評のあるハンドブックを紐解くと、重要な問題を網羅した上で、主だった文献にどういうものがあるか紹介し、その内容の要約を解説した上で、「詳しいことは文献を見て下さい」と読者を導き、可能な場合は複数の方法の比較検討を行っている。

ここまでの「応用数値解析特論」を振り返って

前半では、Poisson 方程式の境界値問題を取り上げ、弱定式化、Ritz-Galerkin 法、直接剛性法に基づく C 言語による実装、FreeFem++ による実装を解説した。ここまでは比較的堅実な足取りであったと考えている。

その後は、FreeFem++ を活用して、時間発展する系 (熱方程式、波動方程式)、流体力学の方程式 (ベクトル値関数の方程式の弱形式導出, 鞍点型変分原理, 非線形方程式に対する Newton 法, 高 Reynolds 数の問題の不安定性に対処するための Lagrange-Galerkin 法) などを解説した。盛りだくさんだが、前半と比べると相当な駆け足で、ウィンドー・ショッピング的になった嫌いがあるかもしれない (非常に幅広い応用があるということで仕方がない、という気はする)。

この講義の締めは、理論的にどこまで保証されているかについて、簡単・不十分でも構わないから解説することとしたい。かなりの強行軍かも しれない。

すみません、今日はちょっと無茶をやります。

Sobolev 空間 W^{m,p}(Ω), H^m(Ω)

関数と、その関数の一般化された 1 階の偏導関数がすべて $L^p(\Omega)$ に属するもの全体を $W^{1,p}(\Omega)$ とする。

$$W^{1,p}(\Omega) := \left\{ u \in L^p(\Omega) \middle| \begin{array}{l} (\exists g_1, \cdots, g_n \in L^p(\Omega))(\forall i \in \{1, \cdots, n\}) \\ (\forall \varphi \in C_0^{\infty}(\Omega)) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} g_i \varphi \ dx \end{array} \right\},$$

各 g_i を $\frac{\partial u}{\partial x_i}$ と表し、一般化偏導関数と呼ぶ。

$$||u||_{W^{1,p}} := \left(||u||_{L^p}^p + \sum_{i=1}^n \left|\left|\frac{\partial u}{\partial x_i}\right|\right|_{L^p}^p\right)^{1/p}$$

 $m \in \mathbb{N}$, $m \geq 2$ に対して

$$W^{m,p}(\Omega) = \left\{ u \in W^{m-1,p}(\Omega) \mid \frac{\partial u}{\partial x_i} \in W^{m-1,p}(\Omega) \ (i = 1, \dots, n). \right\}$$

m=0 の場合は $L^p(\Omega)$ を表すとする: $W^{0,p}(\Omega)=L^p(\Omega)$.

p=2 の場合は Hilbert 空間となり便利なので、別の記号も用意する。

$$H^m(\Omega) := W^{m,2}(\Omega).$$

Sobolev 空間 $W^{m,p}(\Omega)$, $H^m(\Omega)$

 $C_0^\infty(\Omega) \subset W^{m,p}(\Omega)$ である。

 $C_0^\infty(\Omega)$ の $W^{m,p}(\Omega)$ での閉包を $W_0^{m,p}(\Omega)$ と表す。つまり、 $u \in W_0^{m,p}(\Omega)$ であるとは、

$$\lim_{n\to\infty}\|u-u_n\|_{W^{m,p}}=0$$

を満たす $C_0^{\infty}(\Omega)$ 内の列 $\{u_n\}_{n\in\mathbb{N}}$ が存在することをいう。

$$H_0^m(\Omega) := W_0^{m,2}(\Omega)$$
 とする。

 $V := H_0^1(\Omega)$ の内積、ノルムとして

$$(u,v)_{V} := \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}} \right)_{L^{2}}, \quad \|u\|_{V} := \sqrt{(u,u)_{V}} = \left(\sum_{i=1}^{n} \left\| \frac{\partial u}{\partial x_{i}} \right\|_{L^{2}}^{2} \right)^{1/2}$$

が採用できる。

12 有限要素法の理論的背景 12.1 概観

今回考えるのは、基本である Poisson 方程式の境界値問題である。

 Ω は \mathbb{R}^n の有界領域で、その境界 Γ は区分的に十分滑らかであるとする。また Γ_1 , Γ_2 は条件

$$\Gamma = \overline{\Gamma}_1 \cup \overline{\Gamma}_2, \quad \Gamma_1 \cap \Gamma_2 = \emptyset, \quad \Gamma_1 \neq \emptyset$$

を満たすとする。 $f:\Omega\to\mathbb{R},\ g_1\colon\Gamma_1\to\mathbb{R},\ g_2\colon\Gamma_1\to\mathbb{R}$ が与えられた時、次の Poisson 方程式の境界値問題を考える。

問題 (P)

次式を満たす u を求めよ:

$$-\triangle u = f \quad \text{in } \Omega,$$

(2)
$$u = g_1 \quad \text{on } \Gamma_1,$$

(3)
$$\frac{\partial u}{\partial \boldsymbol{n}} = g_2 \quad \text{on } \Gamma_2,$$

ここで \mathbf{n} は Γ の外向き単位法線ベクトルを表す。

12 有限要素法の理論的背景 12.1 概観

まず、やり残したことを列挙してみる。

- 弱解の存在と一意性を証明していない。
- ② 弱解の正則性 (微分可能性や導関数の連続性) を証明していない。弱解が十分な滑らかさを持っていれば、それは真の解であることを示すに止まっている。
- 有限要素解の精度について、「誤差最小の原理」を示すに止まっている。実際はどれくらい小さい?
- 一般には、有限要素解の存在と一意性も問題になる。それは弱解の一意存在と同様に証明することも出来るが、この講義では、菊地 [6] に従って、Poisson 方程式の境界値問題の場合には、弱形式が正値対称行列を係数とする連立 1 次方程式と同値であることを示してある。ゆえに一応は解決済みである。

(鞍点型変分原理の場合はそんなに簡単ではない。)

12.2 弱解の一意存在 12.2.1 まず結論

(弱解の方法の参考書としては、Brezis [4] を勧める。)

問題 (W)

Find $u \in X_{g_1}$ s.t.

(4)
$$\langle u,v\rangle = (f,v) + [g_2,v] \quad (v \in X).$$

弱解、すなわち問題 (W) の解 $u \in X_{g_1}$ が一意的に存在することの証明は、解析学の問題である、と知らん顔をすることも出来なくはないけれど、以下あらすじを紹介する。

Hilbert 空間の Riesz の表現定理、あるいは Lax-Milgram の定理、さらにその一般化である Stampacchia の定理 (この名称は Brezis [4] で採用されているが、一般的ではないかもしれない) を用いる。

これらの定理は兄弟のようなものである。任意の1つを使って他の定理 を証明することも出来るし、どれも「同様に証明する」ことも出来る。

12.2.2 関数解析から

このスライドに書いてあることは、関数解析の常識的事項である。

Banach 空間、Hilbert 空間は既知とする (それぞれノルム、内積を備えた完備な空間)。

X を体 \mathbb{K} 上の Banach 空間とするとき、X から \mathbb{K} への線形写像を、X 上の線形形式とよび、X 上の連続な線形形式全体を X' と表す。

線形形式 $f: X \to \mathbb{K}$ が連続であるためには、f が有界であること、すなわち

$$(\exists M \in \mathbb{R})(\forall x \in X) \quad |f(x)| \leq M ||x||$$

が成り立つことが必要十分である。

任意の $f \in X'$ に対して

$$\|f\|_{X'} := \sup_{x \in X} \frac{|f(x)|}{\|x\|} = \sup_{\substack{x \in X \\ \|x\| = 1}} |f(x)| = \sup_{\substack{x \in X \\ \|x\| \le 1}} |f(x)|$$
 (f が有界なので有限値)

と定めると、X' は $\|\cdot\|_{X'}$ をノルムとする Banach 空間となる。

 $x \in X$, $f \in X'$ とするとき、f(x) のことを $\langle f, x \rangle$ と書くことも多い。

Hilbert 空間は Banach 空間であるから、以上すべてが成立する。

12.2.3 Riesz の表現定理

Hilbert 空間においては、次の Riesz の定理が基本的かつ重要である。

|定理 13.1 (Riesz の表現定理)|

H は \mathbb{K} 上の Hilbert 空間、 $F \in H'$ とするとき、 $\exists! u \in H$ s.t.

$$(v,u)=\langle F,v\rangle \quad (v\in H).$$

 $H = \mathbb{R}^n$ の場合に何を意味するか、考えてみよう。

証明は、ほとんどすべての関数解析のテキストに載っている。「閉線形部分空間に垂線が引ける」という射影定理を用いるのがポイントである。 $H=\mathbb{R}^n$ の場合に説明した

「内積空間ノート 2.12 Riesz の表現定理 (ℝ″版)」

を紹介しておく。

問題が簡単な場合は、この定理を使って弱解の一意存在を証明することも出来るが(次のスライドを見よ)、もう少し便利な形にした Lax-Milgramの定理が紹介されることが多い。

12.2.3 Riesz の表現定理

例えば、Poisson 方程式の同次 Dirichlet 境界値問題

$$-\triangle u = f$$
 in Ω , $u = 0$ on $\partial \Omega$

に対して、 $V:=H^1_0(\Omega)=\left\{v\in H^1(\Omega);v=0\quad \text{on }\Gamma)\right\}$ で、その内積とノルムを

$$(u,v)_{V} := (\nabla u, \nabla v), \quad \|u\|_{V} := \sqrt{(u,u)_{V}}, \quad (u,v) := \int_{\Omega} u(x)v(x) dx$$

で定義すると、uが弱解とは

$$u \in V$$
, $(u, v)_V = (f, v)$ $(v \in V)$

を満たすことである。この場合、弱解の一意存在は Riesz の表現定理を用いて一発で証明できる。

(以前の記号との対応: $g_1=0$, $\Gamma_2=\emptyset$ であるから、 $X_{g_1}=X=H^1_0(\Omega)=V$. また弱形式 $\langle u,v\rangle=(f,v)\ (v\in X)$ は $(u,v)_V=(f,v)\ (v\in V)$.)

12.2.4 Lax-Milgram の定理

定理 13.2 (Lax-Milgram の定理)

V は \mathbb{R} 上の Hilbert 空間、 $a: V \times V \to \mathbb{R}$ は有界双線型形式で、V で強圧的 (coercive, V-elliptic)、すなわち

$$(\exists \mu > 0)(\forall v \in V) \quad a(v, v) \ge \mu \|v\|^2$$

が成り立つとする。このとき、 $\forall F \in V'$ に対して、 $\exists! u \in V$ s.t.

$$a(u,v) = \langle F,v \rangle \quad (v \in V).$$

さらに a が対称ならば、この u は次のようにも特徴づけられる:

$$u \in V$$
, $J(u) = \min_{v \in V} J(v)$.

ただし

$$J(v) := \frac{1}{2}a(v,v) - \langle F,v \rangle \quad (v \in V).$$

証明は菊地 [1], Brezis [4] などを見よ。

12.2.4 Lax-Milgram の定理

• 双線形形式 $a: V \times V \to \mathbb{K}$ が有界であるとは

$$(\exists M \in \mathbb{R})(\forall u, v \in V) \quad |a(u, v)| \leq M ||u|| ||v||.$$

• 念のため: 「特徴づけられる」というのは、 $u \in V$ に対して、

$$((\forall v \in V) \ a(u, v) = \langle F, v \rangle) \quad \Leftrightarrow \quad J(u) = \min_{v \in V} J(v)$$

が成り立つ、ということである。(以前の授業の $(W)\Leftrightarrow (V)$ に相当する。)

• Lax-Milgram の定理は、Riesz の表現定理における内積 (\cdot, \cdot) を、強 圧的有界双線形形式 $a(\cdot, \cdot)$ に一般化したものである (注意: 内積は強 圧的有界双線形形式である)。こうすることで応用に際して便利と なっている。

さらに応用のための一般化として、次に掲げる Stampacchia の定理がある (定理の名前が書いてないこともあるが)。

12.2.5 Stampacchia の定理

定理 13.3 (Stampacchia の定理)

V は \mathbb{R} 上の Hilbert 空間、K は V の空でない閉凸集合とする。 $a\colon V\times V\to \mathbb{R}$ を有界双線型形式で、K で強圧的 (coercive)、すなわち

$$(\exists \mu > 0)(\forall v \in K) \quad a(v, v) \ge \mu \|v\|^2$$

が成り立つとする。このとき $\forall F \in V'$ に対して、 $\exists! u \in K$ s.t.

$$(\sharp) \qquad (\forall v \in K) \quad a(u, v - u) \ge \langle F, v - u \rangle.$$

さらにaが対称ならば、このuは次のようにも特徴づけられる:

$$u \in K$$
, $J(u) = \min_{v \in K} J(v)$.

ただし

$$J(v) := \frac{1}{2}a(v,v) - \langle F, v \rangle \quad (v \in V).$$

12.2.5 Stampacchia の定理 使用上の注意 (こういう使い道がある)

注意 13.4 (菊地 [1])

● Stampacchia の定理で、aが K で強圧的でなくても、

$$(\exists \mu > 0)(\forall v, v^* \in K) \quad a(v - v^*, v - v^*) \ge \mu \|v - v^*\|^2$$

が成り立てば十分である。この条件は、特に $K=u_0+M$, M は V の閉部 分空間の場合は、次の条件と同値である。

$$(\exists \mu > 0)(\forall v \in M) \quad a(v, v) \geq \mu \|v\|^2.$$

② $K = u_0 + M$, M は V の閉部分空間とするとき、変分不等式 (\sharp) は、

$$(\forall v \in K) \quad a(u, v - u) = \langle F, v - u \rangle$$

ゆ

$$(\forall v \in M) \quad a(u,v) = \langle F, v \rangle$$

と同値である。

我々の問題に対して、M=X, $u_0=$ " Γ_1 で g_1 に等しいある関数"とすると、 $K=u_0+M=X_{g_1}$ となる。

12.3 弱解の滑らかさ $12.3.1_{f=-\triangle u}$ が滑らかならば u も滑らか

Poisson 方程式の弱解 u がどの程度の滑らかさ (微分可能性や導関数の連続性… 弱解の正則性と呼ばれる) を持つか調べよう。

u を弱解とすると、まず定義から $u \in H^1(\Omega)$ である。

Poisson 方程式

$$-\triangle u = f$$

より、 $(\forall k \in \mathbb{Z}_{\geq 0})$ $u \in H^{k+2}(\Omega) \Rightarrow f \in H^k(\Omega)$ は明らかであるが、条件が良い場合には、この逆「 $f \in H^k(\Omega) \Rightarrow u \in H^{k+2}(\Omega)$ 」が成立する。 (実はこの事実はかなり一般の楕円型偏微分方程式について成立する。)

- Ω が 1 次元の区間であれば、 $f \in H^k(\Omega) \Rightarrow u \in H^{k+2}(\Omega)$. (これは簡単。)
- Ω が C^{k+2} 級の開集合であれば、 $f \in H^k(\Omega) \Rightarrow u \in H^{k+2}(\Omega)$. (Evans [5] §6.3.2)
- Ω が凸多角形領域ならば、 $f \in H^0(\Omega) = L^2(\Omega) \Rightarrow u \in H^2(\Omega)$. (Dauge [7], または古典とも言える Grisvard [8])

12.3.2 Sobolev の埋蔵定理

Sobolev の意味での微分可能性ではなく、普通の微積分の意味での微分可能性はどうなるだろうか?

Sobolev の意味で十分な回数の微分可能性があれば、普通の意味での滑らかさ (連続性、微分可能性) が導かれる。

定理 13.5 (いわゆる Sobolev の埋蔵定理の一つ (Evans [5] p. 284))

U が \mathbb{R}^n の有界な開集合、 $k \in \mathbb{N}, 1 \le p \le \infty, u \in W^{k,p}(U)$ とする。 k-n/p>0 であるとき、 $u \in C^{k-[n/p]-1,\gamma}$, ここで

$$\gamma = \begin{cases} \left[\frac{n}{p}\right] + 1 - \frac{n}{p} & (n/p \, \text{が整数でないとき}) \\ 1 未満の任意の正の数 & (n/p \, \text{が整数のとき}). \end{cases}$$

さらに

$$||u||_{C^{k-[n/p]-1,\gamma}(U)} \leq C ||u||_{W^{k,p}(U)}.$$

 $H^k(\Omega)=W^{k,2}(\Omega)$ であるから、k-n/2 より小さい最大の整数を ℓ とするとき、 $u\in H^k(\Omega)\Rightarrow u\in C^\ell(\overline{\Omega})$ が成り立つ。

12.4 有限要素解の誤差評価 12.4.1 方針

簡単のため、ここでは2次元の Poisson 方程式の同次 Dirichlet 境界値 問題を扱うことにする。関数空間とノルムは

$$V := H_0^1(\Omega), \quad \|u\|_V := \|\nabla u\| = \left(\iint_{\Omega} \left(u_x^2 + u_y^2\right) dx dy\right)^{1/2}.$$

基礎となるのは証明済みの次の事実である。

誤差最小の原理 -

u_h を有限要素解とするとき、

$$||u-u_h||_V = \min_{v\in V_h} ||u-v||_V.$$

(菊地先生の本では、 $\|\cdot\|_V$ は $\|\cdot\|_1$, u_h は \hat{u} と書いた。)

 $\|u-v\|_V$ がある程度具体的に計算できて小さいことを示せるような $v \in V_h$ を見出せれば $\|u-u_h\| \le \|u-v\|$ という評価が得られる。

v として、ここではいわゆる補間多項式 $u_h = \Pi_h u$ を利用する。

12.4.2 1 次元の場合の誤差評価

節点の全体を $\{P_i\}_{i=1}^m$ として、区分 1 次多項式 φ_i で $\varphi_i(P_j) = \delta_{ij}$ を満たすものをとると、 $\varphi_1,\ldots,\varphi_m$ は区分 1 次多項式全体のなす線形空間の基底になる。

 $v \in H^1(I)$ に対して、 $\Pi_h v$ を次式で定める。

$$\widetilde{v}_h(x) = \Pi_h v(x) := \sum_{i=1}^m v(x_i) \varphi_i(x).$$

 Π_{hV} は v の Lagrange 補間、線形補間と呼ばれる。

補題 13.6

 $\forall v \in H^2(I)$ に対して、

$$\left\|v-\widetilde{v}_h\right\| \leq \frac{2}{\sqrt{3}}h^2 \left\|v''\right\|, \quad \left\|v'-\widetilde{v}_h'\right\| \leq \frac{2}{\sqrt{3}}h \left\|v''\right\|.$$

証明は例えば、齊藤 [9] の pp. 10-13 に載っている。

12.4.2 1次元の場合の誤差評価

定理 13.7 (有限要素解の誤差評価 (1 次元の場合))

 $\forall f \in L^2(I)$ に対して、 $\exists ! u_h \in V_h$ s.t. u_h は弱解、 $\|u_h\|_V \leq \|f\|$. さらに $\|u - u_h\|_V \leq Ch \|u''\|$, $\|u - u_h\| \leq Ch^2 \|u''\|$.

証明

補題の二つ目の不等式から

$$\|u-u_h\|_V = \|u'-u_h'\| \le \frac{2}{\sqrt{3}}h\|u''\|.$$

後半は、Aubin-Nitsche のトリック (別名 duality argument) を用いる。 $e_h := u - u_h$ とおき、

(5)
$$(w, v)_{V} = (e_h, v) \quad (v \in V)$$

を満たす $w \in V$ を求める (この問題を共役な問題と呼ぶ)。

12.4.2 1 次元の場合の誤差評価

証明 (続き)

 $w \in H^2(I)$ かつ $w'' = -e_h$ である。 さらに u_h は u の V_h 射影であるから、 $e_h = u - u_h$ は $\Pi_h w \in V_h$ とは直交している a 。 すなわち $(e_h, \Pi_h w)_V = 0$ が成り立つ。 ゆえに (5) に $v = e_h$ を代入して

$$\begin{split} \left\| e_h \right\|^2 &= (e_h, e_h) = (w, e_h)_V = (w - \Pi_h w, e_h)_V \le \left\| w - \Pi_h w \right\|_V \left\| e_h \right\|_V \\ &\le \frac{2}{\sqrt{3}} h \left\| w'' \right\| \cdot \frac{2}{\sqrt{3}} h \left\| u'' \right\| = \frac{4}{3} h^2 \left\| e_h \right\| \left\| u'' \right\|. \end{split}$$

両辺を ||e_h|| で割って

$$||e_h|| \leq \frac{4}{3}h^2 ||u''||$$
. \square

 $⁽u_h, v_h)_V = (f, v_h) = (u, v_h) (v_h \in V_h \ \text{より、} (u - u_h, v_h)_V = 0. \ u - u_h \ \text{を} \ e_h \ と書き換えて、<math>v_h \ \text{として} \ \Pi_h w \ \text{をとって、} (e_h, \Pi_h w)_V = 0.)$

 Ω は多角形領域 ($\subset \mathbb{R}^2$), 区分 1 次多項式による $W=H^1(\Omega)$, $V=H^1_0(\Omega)$ の近似空間 W_h , V_h を導入する。

次の3条件が成り立つように $\overline{\Omega}$ を(閉)三角形Tの集合 \mathcal{T} の集合 \mathcal{T} に分割する。

- ② 任意の異なる二つの三角形は内部を共有しない。
- ① 任意の三角形の任意の頂点は、他の三角形の頂点としているか、単独で $\overline{\Omega}$ の角をなすかのどちらかである(ある三角形の辺上に別の三角形の頂点があることはない)。

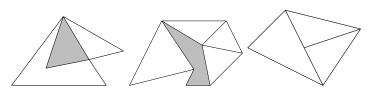


図 1: 重なり, すき間, 頂点が他の要素の辺上にある、なんてのはダメ

$$T \in \mathcal{T}$$
 の直径 (= $\sup_{x,y \in T} |x-y| = T$ の外接円の直径) の最大値を h と

おく:

$$h:=\max_{T\in\mathscr{T}}h_T.$$

三角形分割 \mathcal{T} を、この h を明示する意味で、 \mathcal{T}_h と書くことが多い。 $H^2(\Omega)$ のセミノルム $|u|_{2,T}$ を次式で定義する:

$$|u|_{2,T} := \left[\iint_{T} \left(|u_{xx}|^2 + 2 |u_{xy}|^2 + |u_{yy}|^2 \right) dx dy \right]^{1/2}.$$

1次多項式でTの各項点でuと値が一致するものを Πu と書く。

補題 13.8 (局所補間誤差)

T を閉三角形、 $u \in H^2(T)$ とするとき、 $\|\Pi u - u\|_{L^2(T)} \le C_1 h_T^2 |u|_{2,T},$

$$\|\nabla (\Pi u - u)\|_{L^{2}(T)} \leq C_{1} \frac{1}{\sin^{2} \theta_{T}} h_{T} |u|_{2,T}.$$

ただし $\theta_T := T$ の最小内角. C_1 は T や u に無関係な正定数。

証明は、やはり齊藤 [9] を見よ。

この補題はずいぶん細かいことをやっているようだが、実は理由がある。分割の族を扱うと、無限に多くの三角形が対象になるので、一般には、いくらでも小さい θ_T が出て来るような分割の族がありうる。そうなるとまともな誤差評価が得られないだろうことは容易に想像出来る。そこで次のような仮定をおくことにする。

定義 13.9

三角形分割の族 $\{\mathscr{T}_h\}_{h>0}$ が正則 (regular) とは、

(6)
$$(\exists \theta_1 > 0) \quad \inf_{\mathscr{T}_h} \min_{T \in \mathscr{T}_h} \theta_T \ge \theta_1.$$

この条件を Zlámal の最小角条件と呼ぶ。

同値な条件に

(7)
$$(\exists \nu_1 > 0)(\forall \mathcal{T}_h \in \{\mathcal{T}_h\})(\forall T \in \mathcal{T}_h) \quad \frac{h_T}{\rho_T} \leq \nu_1.$$

がある (こちらの条件は、この形のまま 3 次元の場合に一般することが可能である)。ただし

 $\rho_T := T$ の内接円の直径.

定理 13.10 (大域的補間誤差)

 $\{\mathcal{T}_h\}$ が正則な三角形分割族とするとき、

$$\begin{split} &\|\Pi_h u - u\| \le C_1 h^2 |u|_{2,\Omega} \quad (u \in H^2(\Omega)), \\ &\|\nabla (\Pi_h u - u)\| \le \frac{C_1}{\sin^2 \theta_1} h |u|_{2,\Omega} \quad (u \in H^2(\Omega)). \end{split}$$

ここで C_1 は補題 13.8 中に現れる正定数である。

証明は、やはり齊藤 [9] を見よ。

定理 13.11 (H¹ 誤差評価)

 Ω は凸多角形領域、 $\{\mathcal{T}_h\}_{h>0}$ を Ω の正則な三角形分割の族とする。 $u\in V$ を 弱解、 \mathcal{I}_{h} の連続な区分 1 次多項式で境界で 0 になるもの全体を V_{h} , $u_{h} \in V_{h}$ を 有限要素解とするとき、

$$\|u-u_h\|_V\leq Ch|u|_{H^2(\Omega)}.$$

ただし $C = C(\theta_1, \Omega) > 0$.

証明.

誤差最小の原理から、 $\forall v_h \in V_h$ に対して、

$$||u - u_h||_V \le ||u - v_h||_V$$
.

ν_h として Π_hμ を代入すると、

$$||u - u_h||_V \le ||u - \Pi_h u||_V \le C(\theta_1, \Omega) h |u|_{2,\Omega}.$$

ゆえに

$$||u-u_h||_V \leq C(\theta_1,\Omega)h|u|_{2,\Omega}$$
.

応用数値解析特論 第 13 回 ~有限要素法の理論的背景~

定理 13.12 (L² 誤差評価)

定理 13.11 と同じ仮定のもとで

$$||u-u_h|| \leq C'h^2 |u|_{H^2(\Omega)}.$$

証明.

定理 13.7 の後半の証明と同様に Aubin-Nitsche のトリックを用いる。

12.4.4 まとめ

- H¹ 誤差評価については
 - 1次元の証明は、誤差最小の原理+補間関数の局所的な誤差
 - 2次元の証明は、誤差最小の原理+補間関数の局所的な誤差+分割の 正則性から導かれる大域的な誤差評価
- L^2 誤差評価は、 H^1 誤差評価よりも h の冪が 1 高い評価が得られる (Aubin-Nitcshe のトリックによる)

参考文献I

- [1] 菊地文雄:有限要素法の数理, 培風館 (1994), 有限要素法の解析に関する貴重な和書です。版元在庫切れ状態です。読みたい学生は相談して下さい。
- [2] 田端正久:偏微分方程式の数値解法, 岩波書店 (2010), もともとは岩波講座応用数学の「微分方程式の数値解法 II」(1994) であった。
- [3] Brenner, S. C. and Scott, L. R.: *The Mathematical Theory of Finite Element Methods, 3rd edition*, Springer (2008).
- [4] Brezis, H.: 関数解析, 産業図書 (1988), (藤田 宏, 小西 芳雄 訳), 原著 は版を改めて、より内容豊富になっています。
- [5] Evans, L. C.: *Partial Differential Equations*, Graduate Studies in Mathematics, AMS (2010), 偏微分方程式の定番本.
- [6] 菊地文雄:有限要素法概説, サイエンス社 (1980), 新訂版 1999.

参考文献 ||

- [7] Dauge, M.: Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics 1341, Springer (2009/2/22).
- [8] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pitman, Boston (1985), SIAM から 2011 年に再販されています.
- [9] 齊藤宣一:有限要素法と非線形楕円型方程式の解の可視化, Ver. 2, 今は公開していないようだ. より新しいものがあるから? (2009, 2010).