応用数值解析特論 第2回

~Poisson 方程式の境界値問題の弱定式化~

かつらだ まさし 桂田 祐史

http://nalab.mind.meiji.ac.jp/~mk/lecture/ouyousuuchikaisekitokuron-2020/

2020年9月28日

目次

- 1 本日の内容・連絡事項
- 2 Poisson 方程式の境界値問題の弱定式化
 - 数学的準備
 - Green の定理
 - 変分法の基本補題
 - 広義導関数、超関数微分、Sobolev 空間
 - Poisson 方程式の境界値問題
 - 弱定式化 弱解の方法
 - 変分原理
- 3 付録
- 4 参考文献

アンケート 履修者名簿に載っている8名のうち、6名 (2020/9/27 19:00 現在)の人からアンケートが届いています (ありがとう)。残り2名の人も出してもらえると良いのだけど…オフィス・アワーをいつにするか、他の科目の学生の意見も見てからにするので、少し待ってください。

今日の話は

(現象数理学科の「応用複素関数」を履修した人は、今日 (と次回の半分) の話は 80% 位は聴いたことがあるはず。でもそれをしっかり覚えている人は少数派だと思うので、ゆっくりやります。種本は前回言ったように菊地 [1] です。)

アンケート 履修者名簿に載っている8名のうち、6名 (2020/9/27 19:00 現在)の人からアンケートが届いています (ありがとう)。残り2名の人も出してもらえると良いのだけど…オフィス・アワーをいつにするか、他の科目の学生の意見も見てからにするので、少し待ってください。

今日の話は

(現象数理学科の「応用複素関数」を履修した人は、今日 (と次回の半分) の話は 80% 位は聴いたことがあるはず。でもそれをしっかり覚えている人は少数派だと思うので、ゆっくりやります。種本は前回言ったように菊地 [1] です。)

有限要素法を用いる際に必ず必要になるのが、解こうとしている問題の<mark>弱形式</mark>である。

アンケート 履修者名簿に載っている8名のうち、6名 (2020/9/27 19:00 現在)の人からアンケートが届いています (ありがとう)。残り2名の人も出してもらえると良いのだけど…オフィス・アワーをいつにするか、他の科目の学生の意見も見てからにするので、少し待ってください。

今日の話は

(現象数理学科の「応用複素関数」を履修した人は、今日 (と次回の半分) の話は 80% 位は聴いたことがあるはず。でもそれをしっかり覚えている人は少数派だと思うので、ゆっくりやります。種本は前回言ったように菊地 [1] です。)

有限要素法を用いる際に必ず必要になるのが、解こうとしている問題の弱形式である。

現代の解析学では、微分方程式を扱うために**弱解の方法**, **弱定式化**を用いることが多い。 弱形式は、そこに現れる"方程式"(あるいは方程式代わりの条件)と言える。

アンケート 履修者名簿に載っている8名のうち、6名 (2020/9/27 19:00 現在)の人からアンケートが届いています (ありがとう)。残り2名の人も出してもらえると良いのだけど…オフィス・アワーをいつにするか、他の科目の学生の意見も見てからにするので、少し待ってください。

今日の話は

(現象数理学科の「応用複素関数」を履修した人は、今日 (と次回の半分) の話は 80% 位は聴いたことがあるはず。でもそれをしっかり覚えている人は少数派だと思うので、ゆっくりやります。種本は前回言ったように菊地 [1] です。)

有限要素法を用いる際に必ず必要になるのが、解こうとしている問題の弱形式である。

現代の解析学では、微分方程式を扱うために**弱解の方法, 弱定式化**を用いることが多い。 弱形式は、そこに現れる"方程式"(あるいは方程式代わりの条件)と言える。

今回は基本的な Poisson 方程式の境界値問題を題材として、弱解の方法を説明する。弱形式の求め方をマスターするには、ある程度の慣れ (練習) が必要であるが、今日は2度目の遭遇ということになる (最初は前回の Laplace 方程式に対する Dirichlet 原理 … 今回の話は、前回の話のマイナー・バージョンアップとも言える)。第3,4 弾を用意している…

アンケート 履修者名簿に載っている8名のうち、6名 (2020/9/27 19:00 現在)の人からアンケートが届いています (ありがとう)。残り2名の人も出してもらえると良いのだけど…オフィス・アワーをいつにするか、他の科目の学生の意見も見てからにするので、少し待ってください。

今日の話は

(現象数理学科の「応用複素関数」を履修した人は、今日 (と次回の半分) の話は 80% 位は聴いたことがあるはず。でもそれをしっかり覚えている人は少数派だと思うので、ゆっくりやります。種本は前回言ったように菊地 [1] です。)

有限要素法を用いる際に必ず必要になるのが、解こうとしている問題の弱形式である。

現代の解析学では、微分方程式を扱うために**弱解の方法**, **弱定式化**を用いることが多い。 弱形式は、そこに現れる"方程式"(あるいは方程式代わりの条件)と言える。

今回は基本的な Poisson 方程式の境界値問題を題材として、弱解の方法を説明する。弱形式の求め方をマスターするには、ある程度の慣れ (練習) が必要であるが、今日は 2 度目の遭遇ということになる (最初は前回の Laplace 方程式に対する Dirichlet 原理 \cdots 今回の話は、前回の話のマイナー・バージョンアップとも言える)。第 3,4 弾を用意している \cdots

ちなみに、弱解の方法を数学としてきちんと学ぶには、関数解析のテキストである Brezis [2], [3] がお勧めである。

2 Poisson 方程式の境界値問題の弱定式化

この科目の前半は、楕円型偏微分方程式の境界値問題に対する有限要素法について説明する。

2 Poisson 方程式の境界値問題の弱定式化

この科目の前半は、楕円型偏微分方程式の境界値問題に対する有限要素法について説明する。

(内緒話: 楕円型という言葉の説明は偏微分方程式の講義に譲るが、大まかに言って「どの変数についても同じようになっている」ということである。時刻変数を含まない、定常状態を表すような方程式は楕円型になることが多い。物理に良く出て来る「一様で等方的」という条件を満たす数理モデルの多くに、Laplacian $\triangle = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ という微分作用

素が現れるが、これは典型的な楕円型微分作用素である。

Cf. 熱方程式は放物型方程式、波動方程式は双曲型方程式である。)

2 Poisson 方程式の境界値問題の弱定式化

この科目の前半は、楕円型偏微分方程式の境界値問題に対する有限要素法について説明する。

(内緒話: 楕円型という言葉の説明は偏微分方程式の講義に譲るが、大まかに言って「どの変数についても同じようになっている」ということである。時刻変数を含まない、定常状態を表すような方程式は楕円型になることが多い。物理に良く出て来る「一様で等方的」という条件を満たす数理モデルの多くに、Laplacian $\triangle = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ という微分作用

素が現れるが、これは典型的な楕円型微分作用素である。

Cf. 熱方程式は放物型方程式、波動方程式は双曲型方程式である。)

弱定式化を説明する例題として

- もっとも基本的な楕円型偏微分方程式である Poisson 方程式
- 境界条件としては、頻出する Dirichlet 境界条件と Neumann 境界条件の両方

2.1 数学的準備 2.1.1 Green の定理

定理 2.1 (Green の定理)

 Ω は Gauss の発散定理が成り立つような \mathbb{R}^n の有界領域で、 Γ はその境界、n は Γ 上の点における外向き単位法線ベクトルとする。また $d\sigma$ は面積要素とする。u と v が $\overline{\Omega}$ の 近傍でそれぞれ C^2 級, C^1 級であれば

$$\int_{\Omega} \triangle u \ v \ dx = \int_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} v \ d\sigma - \int_{\Omega} \nabla u \cdot \nabla v \ dx$$

が成り立つ。ここで

$$\frac{\partial u}{\partial \boldsymbol{n}}(x) := \lim_{\varepsilon \to -0} \frac{u(x + \varepsilon \boldsymbol{n}) - u(x)}{\varepsilon} = \nabla u(x) \cdot \boldsymbol{n},$$

$$\nabla u = \left(\frac{\partial u}{\partial x_1} \cdots \frac{\partial u}{\partial x_n}\right)^\top, \quad \nabla u(x) \cdot \nabla v(x) = \sum_{j=1}^2 \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_j}.$$

証明のあらすじ $f := v \nabla u$ に Gauss の発散定理

$$\int_{\Omega} \operatorname{div} f \ dx = \int_{\Gamma} \mathbf{f} \cdot \mathbf{n} \ d\sigma$$

を適用する。 $\operatorname{div} \mathbf{f} = \nabla u \cdot \nabla v + \triangle u \, v, \, \mathbf{f} \cdot \mathbf{n} = \frac{\partial u}{\partial \mathbf{n}}$ であることに注意する。

変分法の基本補題とは、大まかに言うと、 Ω で定義された関数 u が、 "任意の" φ に対して

$$\int_{\Omega} u(x)\varphi(x)dx = 0$$

を満たすならば、 Ω で u=0 が成り立つ、という定理である。

変分法の基本補題とは、大まかに言うと、 Ω で定義された関数 u が、 "任意の" φ に対して

$$\int_{\Omega} u(x)\varphi(x)dx = 0$$

を満たすならば、 Ω で u=0 が成り立つ、という定理である。

u が連続関数であれば、比較的簡単な証明があるが、後のことを考えると、より一般的な状況設定で証明したい。

変分法の基本補題とは、大まかに言うと、 Ω で定義された関数 u が、 "任意の" φ に対して

$$\int_{\Omega} u(x)\varphi(x)dx = 0$$

を満たすならば、 Ω で u=0 が成り立つ、という定理である。

u が連続関数であれば、比較的簡単な証明があるが、後のことを考えると、より一般的な状況設定で証明したい。

u については、なるべく緩い条件 (多くの関数を許す) で、 φ についてはなるべく強い条件 (より少ない φ … 弱い仮定) で示すのが良い。そういう観点から、いくつかあるバージョンのうち、定理 2.2 を紹介する。

変分法の基本補題の1バージョンとして、定理2.2 を紹介する。それを説明するのに、 $C_0^\infty(\Omega)$ と言う記号と、局所可積分と言う言葉が必要である。前者を頭の片隅に入れよう。

変分法の基本補題の1バージョンとして、定理2.2 を紹介する。それを説明するのに、 $C_0^\infty(\Omega)$ と言う記号と、局所可積分と言う言葉が必要である。<mark>前者を頭の片隅に入れよう</mark>。

• \mathbb{R}^n の部分集合 K が**コンパクト**であるとは、K が \mathbb{R}^n の有界閉集合であることをいう。

変分法の基本補題の1バージョンとして、定理2.2を紹介する。それを説明するのに、 $C_0^\infty(\Omega)$ と言う記号と、局所可積分と言う言葉が必要である。前者を頭の片隅に入れよう。

- ℝⁿ の部分集合 K がコンパクトであるとは、K が ℝⁿ の有界閉集合であることをいう。
- \bullet $A \subset \mathbb{R}^n$ に対して、A の閉包 \overline{A} を次式で定める。

 $\overline{A} := \{x \in \mathbb{R}^n \mid (\forall \varepsilon > 0) B(x; \varepsilon) \cap \Omega \neq \emptyset\}.$

直観的に言うと、 \overline{A} は A に A の縁を付け加えた集合である。

変分法の基本補題の1バージョンとして、定理2.2 を紹介する。それを説明するのに、 $C_0^\infty(\Omega)$ と言う記号と、局所可積分と言う言葉が必要である。<mark>前者を頭の片隅に入れよう</mark>。

- ℝⁿ の部分集合 K がコンパクトであるとは、K が ℝⁿ の有界閉集合であることをいう。
- \bullet $A \subset \mathbb{R}^n$ に対して、A の閉包 \overline{A} を次式で定める。

$$\overline{A} := \{x \in \mathbb{R}^n \mid (\forall \varepsilon > 0) B(x; \varepsilon) \cap \Omega \neq \emptyset\}.$$

直観的に言うと、 \overline{A} は A に A の縁を付け加えた集合である。

● Ω を ℝⁿ の開集合、*u*: Ω → ℂ とするとき、*u* の台 (support) supp *u* を次式で定める。

$$\operatorname{supp} u := \overline{\{x \in \Omega \mid u(x) \neq 0\}}.$$

変分法の基本補題の1バージョンとして、定理2.2を紹介する。それを説明するのに、 $C_0^{\infty}(\Omega)$ と言う記号と、局所可積分と言う言葉が必要である。前者を頭の片隅に入れよう。

- \bullet \mathbb{R}^n の部分集合 K が**コンパクト**であるとは、K が \mathbb{R}^n の有界閉集合であることを いう。
- A ⊂ ℝ" に対して、A の閉包 Ā を次式で定める。

$$\overline{A} := \{x \in \mathbb{R}^n \mid (\forall \varepsilon > 0) B(x; \varepsilon) \cap \Omega \neq \emptyset\}.$$

直観的に言うと、 \overline{A} は A に A の縁を付け加えた集合である。

• $\Omega \in \mathbb{R}^n$ の開集合、 $u: \Omega \to \mathbb{C}$ とするとき、u の台 (support) supp u を次式で定 める。

$$\operatorname{supp} u := \overline{\{x \in \Omega \mid u(x) \neq 0\}}.$$

• Ω を \mathbb{R}^n の開集合とする。 $C_0^{\infty}(\Omega)$ という関数空間を次式で定める ($\mathbb{K} = \mathbb{R}, \mathbb{C}$)。 $C_0^{\infty}(\Omega) := \{ u \mid u : \Omega \to \mathbb{K} \ C^{\infty} \ M, \ \text{supp} \ u \ \text{はコンパクト集合, supp} \ u \subset \Omega \}.$

(粗く言って、 Ω の境界の十分近くでは 0 となるような C^{∞} 級の関数の全体。)

変分法の基本補題の1バージョンとして、定理2.2を紹介する。それを説明するのに、 $C_0^\infty(\Omega)$ と言う記号と、局所可積分と言う言葉が必要である。<mark>前者を頭の片隅に入れよう</mark>。

- ℝⁿ の部分集合 K がコンパクトであるとは、K が ℝⁿ の有界閉集合であることをいう。
- \bullet $A \subset \mathbb{R}^n$ に対して、A の閉包 \overline{A} を次式で定める。

$$\overline{A} := \{x \in \mathbb{R}^n \mid (\forall \varepsilon > 0) B(x; \varepsilon) \cap \Omega \neq \emptyset\}.$$

直観的に言うと、 \overline{A} は A に A の縁を付け加えた集合である。

Ω を ℝⁿ の開集合、u: Ω → ℂ とするとき、u の台 (support) supp u を次式で定める。

$$\operatorname{supp} u := \overline{\{x \in \Omega \mid u(x) \neq 0\}}.$$

- Ω を \mathbb{R}^n の開集合とする。 $C_0^\infty(\Omega)$ という関数空間を次式で定める ($\mathbb{K}=\mathbb{R},\mathbb{C}$)。 $C_0^\infty(\Omega):=\{u\mid u\colon\Omega\to\mathbb{K}\ C^\infty\ \text{級, supp}\ u\ \text{はコンパクト集合, supp}\ u\subset\Omega\}\,.$ (粗く言って、 Ω の境界の十分近くでは 0 となるような C^∞ 級の関数の全体。)
- $f \in L^1_{loc}(\Omega)$ (f が Ω で**局所可積分**) とは、 $f: \Omega \to \mathbb{C}$ が可測であり、 Ω に含まれる 任意のコンパクト集合 K に対して $\int_K |f(x)| dx < +\infty$ が成り立つことを言う。 Ω で連続な関数は局所可積分である: $C(\Omega) \subset L^1_{loc}(\Omega)$.

定理 2.2 (変分法の基本補題)

 $u\in L^1_{loc}(\Omega)$ \mathfrak{D}^{ς}

$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} u(x)\varphi(x) \ dx = 0$$

を満たすならば、u は Ω 上ほとんどいたるところ 0 に等しい: u=0 a.e. in Ω .

定理 2.2 (変分法の基本補題)

 $u\in L^1_{\mathrm{loc}}(\Omega)$ \mathfrak{D}^{\S}

$$(\forall \varphi \in C_0^{\infty}(\Omega)) \int_{\Omega} u(x)\varphi(x) \ dx = 0$$

を満たすならば、u は Ω 上ほとんどいたるところ 0 に等しい: u=0 a.e. in Ω .

系 2.3 (変分法の基本補題 (連続関数バージョン))

 $u \in C(\Omega)$ \mathfrak{D}^{ς}

$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} u(x)\varphi(x) \ dx = 0$$

を満たすならば、u は Ω 上いたるところ 0 に等しい:

$$(\forall x \in \Omega) \quad u(x) = 0.$$

定理 2.2 (変分法の基本補題)

 $u \in L^1_{loc}(\Omega)$ $\mathfrak{D}^{\mathfrak{z}}$

$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} u(x)\varphi(x) \ dx = 0$$

を満たすならば、u は Ω 上ほとんどいたるところ 0 に等しい: u=0 a.e. in Ω .

系 2.3 (変分法の基本補題 (連続関数バージョン))

 $u \in C(\Omega)$ $\mathfrak{D}^{\mathfrak{Z}}$

$$(\forall \varphi \in C_0^{\infty}(\Omega)) \qquad \int_{\Omega} u(x)\varphi(x) \ dx = 0$$

を満たすならば、u は Ω 上いたるところ 0 に等しい:

$$(\forall x \in \Omega) \quad u(x) = 0.$$

Cf. L² ですべての要素と直交する元は 0

 $u\in L^2(\Omega)$ が $(\forall \varphi\in L^2(\Omega))$ $(u,\varphi)=0$ を満たすならば、u=0 (ゆえに u=0 a.e. in Ω).

今回の話は、きちんとするにはかなり手間がかかる。中でも、微分の意味を拡張して議論する、というあたりが大きな問題となる。

今回の話は、きちんとするにはかなり手間がかかる。中でも、微分の意味を拡張して議論する、というあたりが大きな問題となる。

定義 2.4 (広義導関数 (1 次元の場合))

 Ω を \mathbb{R}^n の開集合、 $f \in L^2(\Omega)$ とする。 $g \in L^2(\Omega)$ が f の x_j に関する**広義導関数** (超関数微分、Sobolevの意味での導関数)であるとは

(1)
$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} g(x)\varphi(x)dx = -\int_{\Omega} f(x)\frac{\partial \varphi}{\partial x_j} dx.$$

が成り立つことをいう。

今回の話は、きちんとするにはかなり手間がかかる。中でも、微分の意味を拡張して議論する、というあたりが大きな問題となる。

定義 2.4 (広義導関数 (1 次元の場合))

 Ω を \mathbb{R}^n の開集合、 $f \in L^2(\Omega)$ とする。 $g \in L^2(\Omega)$ が f の x_j に関する**広義導関数** (超関数微分, Sobolevの意味での導関数) であるとは

(1)
$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} g(x)\varphi(x)dx = -\int_{\Omega} f(x)\frac{\partial \varphi}{\partial x_j} dx.$$

が成り立つことをいう。

f が C^1 級のとき、 $g=rac{\partial f}{\partial x_j}$ とおくと (1) は部分積分 (Gauss の発散定理) で証明できる。

今回の話は、きちんとするにはかなり手間がかかる。中でも、微分の意味を拡張して議論 する、というあたりが大きな問題となる。

定義 2.4 (広義導関数 (1 次元の場合))

 Ω を \mathbb{R}^n の開集合、 $f \in L^2(\Omega)$ とする。 $g \in L^2(\Omega)$ が f の x_i に関する**広義導関数** (超関 数微分, Sobolevの意味での導関数) であるとは

(1)
$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} g(x)\varphi(x)dx = -\int_{\Omega} f(x)\frac{\partial \varphi}{\partial x_j} dx.$$

が成り立つことをいう。

f が C^1 級のとき、 $g=rac{\partial f}{\partial x_i}$ とおくと (1) は部分積分 (Gauss の発散定理) で証明できる。 誤解が生じる恐れがないとき、g のことを $\frac{\partial f}{\partial x}$ と表す (記号の濫用)。

今回の話は、きちんとするにはかなり手間がかかる。中でも、微分の意味を拡張して議論する、というあたりが大きな問題となる。

定義 2.4 (広義導関数 (1 次元の場合))

 Ω を \mathbb{R}^n の開集合、 $f \in L^2(\Omega)$ とする。 $g \in L^2(\Omega)$ が f の x_j に関する**広義導関数** (超関数微分, Sobolevの意味での導関数) であるとは

(1)
$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} g(x)\varphi(x)dx = -\int_{\Omega} f(x)\frac{\partial \varphi}{\partial x_j} dx.$$

が成り立つことをいう。

f が C^1 級のとき、 $g=\frac{\partial f}{\partial x_j}$ とおくと (1) は部分積分 (Gauss の発散定理) で証明できる。 誤解が生じる恐れがないとき、g のことを $\frac{\partial f}{\partial x_j}$ と表す (記号の濫用)。 $f\in L^2(\Omega)$ のうちで、各 x_j について Sobolev の意味で微分可能で、 $\frac{\partial f}{\partial x_j}\in L^2(\Omega)$ となっているもの全体を $H^1(\Omega)$ と表す。 $H^1(\Omega)$ を Sobolev 空間と呼ぶ。

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

今回の話は、きちんとするにはかなり手間がかかる。中でも、微分の意味を拡張して議論する、というあたりが大きな問題となる。

定義 2.4 (広義導関数 (1 次元の場合))

 Ω を \mathbb{R}^n の開集合、 $f \in L^2(\Omega)$ とする。 $g \in L^2(\Omega)$ が f の x_j に関する**広義導関数** (超関数微分, Sobolevの意味での導関数) であるとは

(1)
$$(\forall \varphi \in C_0^{\infty}(\Omega)) \quad \int_{\Omega} g(x)\varphi(x)dx = -\int_{\Omega} f(x)\frac{\partial \varphi}{\partial x_j} dx.$$

が成り立つことをいう。

f が C^1 級のとき、 $g = \frac{\partial f}{\partial x_j}$ とおくと (1) は部分積分 (Gauss の発散定理) で証明できる。

誤解が生じる恐れがないとき、g のことを $\frac{\partial f}{\partial x_i}$ と表す (記号の濫用)。

 $f \in L^2(\Omega)$ のうちで、各 x_j について Sobolev の意味で微分可能で、 $\frac{\partial f}{\partial x_j} \in L^2(\Omega)$ となっている の人性な $u(\Omega)$ と思う。

ているもの全体を $H^1(\Omega)$ と表す。 $H^1(\Omega)$ を Sobolev 空間と呼ぶ。

実は後で出て来る X_{g_1} , X は、本当は次のように定義するのが正しい。

$$X_{g_1} = \left\{ w \in H^1(\Omega) \;\middle|\; w = g_1 \text{ on } \Gamma_1 \right\}, \quad X = \left\{ w \in H^1(\Omega) \;\middle|\; w = 0 \text{ on } \Gamma_1 \right\}.$$

2.2 Poisson 方程式の境界値問題

 Ω は \mathbb{R}^n の有界領域で、その境界 Γ は区分的に十分滑らかであるとする。また Γ_1 , Γ_2 は条件

$$\Gamma = \overline{\Gamma}_1 \cup \overline{\Gamma}_2, \quad \Gamma_1 \cap \Gamma_2 = \emptyset, \quad \Gamma_1 \neq \emptyset$$

を満たすとする。 $f:\Omega\to\mathbb{R},\ g_1:\Gamma_1\to\mathbb{R},\ g_2:\Gamma_1\to\mathbb{R}$ が与えられた時、Poisson 方程式の境界値問題

- 問題 (P)

次式を満たす u を求めよ:

(2)
$$-\triangle u = f \quad \text{in } \Omega,$$

(3)
$$u = g_1 \quad \text{on } \Gamma_1,$$

(4)
$$\frac{\partial u}{\partial \boldsymbol{n}} = g_2 \quad \text{on } \Gamma_2,$$

を考える。ここで **n** は Γ の外向き単位法線ベクトルを表す。

念のため (2) を Poisson 方程式, (3) を Dirichlet 境界条件, (4) を Neumann 境界条件と呼ぶ。

スライド 22 に図を置く。

4 □ ▷ ◀률 ▷ ◀불 ▷ 절

関数空間 X_{g_1} , X を次式で定める。

(5)
$$X_{g_1} := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = g_1 \right\},$$

(6)
$$X := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = 0 \right\}.$$

関数空間 X_{g_1} , X を次式で定める。

(5)
$$X_{g_1} := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = g_1 \right\},$$

(6)
$$X := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = 0 \right\}.$$

関数の滑らかさに言及していない、いい加減な定義だが、今回は大らかに考えよう。

関数空間 X_{g_1} , X を次式で定める。

(5)
$$X_{g_1} := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = g_1 \right\},$$

(6)
$$X := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = 0 \right\}.$$

関数の滑らかさに言及していない、いい加減な定義だが、今回は大らかに考えよう。

Poisson 方程式 (2) に、任意の $v \in X$ をかけて Ω で積分すると、

(7)
$$-\int_{\Omega} \triangle u(x)v(x) \ dx = \int_{\Omega} f(x)v(x) \ dx.$$

関数空間 X_{g_1} , X を次式で定める。

(5)
$$X_{g_1} := \{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = g_1 \},$$

(6)
$$X := \left\{ v \mid v \colon \overline{\Omega} \to \mathbb{R}, \quad v|_{\Gamma_1} = 0 \right\}.$$

関数の滑らかさに言及していない、いい加減な定義だが、今回は大らかに考え よう。

Poisson 方程式 (2) に、任意の $v \in X$ をかけて Ω で積分すると、

(7)
$$-\int_{\Omega} \triangle u(x)v(x) \ dx = \int_{\Omega} f(x)v(x) \ dx.$$

ここで Green の積分公式

$$\int_{\Omega} \triangle u(x)v(x) \ dx = \int_{\partial\Omega} \frac{\partial u}{\partial n}(x)v(x) \ d\sigma - \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \ dx \quad (d\sigma \ は面積要素)$$

を用いると、(7) は次のように変形できる。

(8)
$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \ dx - \int_{\partial \Omega} \frac{\partial u}{\partial n}(x) v(x) \ d\sigma = \int_{\Omega} f(x) v(x) dx.$$

境界条件 (4) から $\left. \frac{\partial u}{\partial n} \right|_{\Gamma_1} = g_2$, 関数空間 X の定義から $v|_{\Gamma_1} = 0$ であるから

$$\int_{\partial\Omega} \frac{\partial u}{\partial n}(x)v(x) d\sigma = \int_{\Gamma_1} \frac{\partial u}{\partial n}(x)v(x) d\sigma + \int_{\Gamma_2} \frac{\partial u}{\partial n}(x)v(x) d\sigma$$
$$= \int_{\Gamma_1} \frac{\partial u}{\partial n}(x)0 d\sigma + \int_{\Gamma_2} g_2(x)v(x) d\sigma$$
$$= \int_{\Gamma_2} g_2(x)v(x) d\sigma.$$

ゆえに (8) は (よって (7) も) 次と同値である:

(9)
$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx = \int_{\Omega} f(x) v(x) dx + \int_{\Gamma_2} g_2(x) v(x) d\sigma.$$

(これが弱形式である。)

v のことを**試験関数** (test function) と呼ぶ。

ここまでの振り返り: 微分方程式に試験関数をかけて領域全体で積分し、Green の公式を使ってから、境界条件を代入して整理する。

記述の簡略化のために記号をいくつか定義しよう。

$$\langle u, v \rangle := \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx, \quad (u, v) := \int_{\Omega} u(x) \ v(x) dx, \quad [u, v] := \int_{\Gamma_2} u(x) \ v(x) d\sigma,$$

$$\|u\| := \sqrt{\langle u, u \rangle}, \quad \|u\| := \sqrt{\langle u, u \rangle}.$$

記述の簡略化のために記号をいくつか定義しよう。

$$\langle u, v \rangle := \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx, \quad (u, v) := \int_{\Omega} u(x) \ v(x) dx, \quad [u, v] := \int_{\Gamma_2} u(x) \ v(x) d\sigma,$$
$$\|\|u\|\| := \sqrt{\langle u, u \rangle}, \quad \|u\| := \sqrt{\langle u, u \rangle}.$$

これらを用いて、上で分かったことをまとめると、

定理 2.5 ((P) ⇒ (W))

u が境界値問題 (P) の解ならば、u は次の問題 (W) の解である。

- 問題 (W) ·

Find $u \in X_{g_1}$ s.t.

$$(10) \langle u,v\rangle = (f,v) + [g_2,v] (v \in X).$$

記述の簡略化のために記号をいくつか定義しよう。

$$\langle u, v \rangle := \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx, \quad (u, v) := \int_{\Omega} u(x) v(x) dx, \quad [u, v] := \int_{\Gamma_2} u(x) v(x) d\sigma,$$
$$\|\|u\|\| := \sqrt{\langle u, u \rangle}, \quad \|u\| := \sqrt{\langle u, u \rangle}.$$

これらを用いて、上で分かったことをまとめると、

定理 2.5 ((P) ⇒ (W))

u が境界値問題 (P) の解ならば、u は次の問題 (W) の解である。

- 問題 (W) -

Find $u \in X_{g_1}$ s.t.

$$(10) \langle u,v\rangle = (f,v) + [g_2,v] (v \in X).$$

- (W) の解を (P) の弱解 (weak solution)
- 問題 (P) に対して問題 (W) を設定することを弱定式化 (weak formulation)
- (10) を弱形式 (weak form)

と呼ぶ。

13 / 25

ほぼ逆の命題、すなわち次の定理が成り立つ。

定理 2.6 $((W)+\alpha \Rightarrow (P))$

uが(W)の解で、かつ十分滑らかであれば(P)の解になる

ほぼ逆の命題、すなわち次の定理が成り立つ。

定理 2.6 $((W)+\alpha \Rightarrow (P))$

u が (W) の解で、かつ十分滑らかであれば (P) の解になる

証明 まず $u \in X_{g_1}$ から $u = g_1$ (on Γ_1). すなわち (3) が成り立つ。

ほぼ逆の命題、すなわち次の定理が成り立つ。

定理 2.6 $((W)+\alpha \Rightarrow (P))$

uが(W)の解で、かつ十分滑らかであれば(P)の解になる

証明 まず $u \in X_{g_1}$ から $u = g_1$ (on Γ_1). すなわち (3) が成り立つ。

弱形式に対して、Green の公式を使うと

$$(\sharp) \qquad -\int_{\Omega} \triangle uv \ dx = \int_{\Omega} fv \ dx + \int_{\Gamma_2} \left(g_2 - \frac{\partial u}{\partial n} \right) v \ ds \quad (v \in X).$$

ほぼ逆の命題、すなわち次の定理が成り立つ。

定理 2.6 ((W)+ $\alpha \Rightarrow$ (P))

uが (W)の解で、かつ十分滑らかであれば (P)の解になる

証明 まず $u \in X_{g_1}$ から $u = g_1$ (on Γ_1). すなわち (3) が成り立つ。

弱形式に対して、Green の公式を使うと

$$(\sharp) \qquad -\int_{\Omega} \triangle uv \ dx = \int_{\Omega} fv \ dx + \int_{\Gamma_2} \left(g_2 - \frac{\partial u}{\partial n} \right) v \ ds \quad (v \in X).$$

特に $v \in C_0^\infty(\Omega)$ の場合を考えると、 Γ_2 上の積分は 0 になるので

$$-\int_{\Omega}\triangle uv\ dx=\int_{\Omega}fv\ dx\quad (v\in C_0^\infty(\Omega)).$$

ほぼ逆の命題、すなわち次の定理が成り立つ。

定理 2.6 ((W)+ $\alpha \Rightarrow$ (P))

uが (W)の解で、かつ十分滑らかであれば (P)の解になる

証明 まず $u \in X_{g_1}$ から $u = g_1$ (on Γ_1). すなわち (3) が成り立つ。

弱形式に対して、Green の公式を使うと

$$(\sharp) \qquad -\int_{\Omega} \triangle uv \ dx = \int_{\Omega} fv \ dx + \int_{\Gamma_2} \left(g_2 - \frac{\partial u}{\partial n} \right) v \ ds \quad (v \in X).$$

特に $v \in C_0^\infty(\Omega)$ の場合を考えると、 Γ_2 上の積分は 0 になるので

$$-\int_{\Omega}\triangle uv\ dx=\int_{\Omega}fv\ dx\quad (v\in C_0^\infty(\Omega)).$$

変分法の基本補題から

$$-\triangle u = f$$
 (in Ω).

すなわち (2) が成り立つ。

 $-\triangle u = f$ (in Ω) を (\sharp) に代入すると

$$\int_{\Gamma_2} \left(g_2 - \frac{\partial u}{\partial n} \right) v \ ds = 0 \quad (v \in X).$$

また変分法の基本補題を用いて

$$\frac{\partial u}{\partial n} = g_2 \quad \text{(on } \Gamma_2\text{)}.$$

すなわち (4) が成り立つ。

細かい注意 $-\triangle u=f$ が成り立つとき、u が滑らかなほど、f も滑らかになる。これは当たり前だが、 Ω が十分滑らかであれば (直観的には $\partial\Omega$ が滑らかな曲線ならば)、弱形式が成り立つとき、f が滑らかなほど、u も滑らかになることが証明できる。そういう場合は、定理の条件「なおかつ十分滑らかであれば」はチェックする必要がなくなる。

任意の $u \in X_{g_1}$ に対して、

$$I[u] := \frac{1}{2} |||u|||^2 - (f, u) - [g_2, u]$$

とおく。次のような変分問題 (すなわち汎函数の最小問題) を考える。

問題 (V)

Find $u\in X_{g_1}$ s.t. $I[u]=\min_{w\in X_{g_1}}I[w].$ (すなわち $I\colon X_{g_1}\to\mathbb{R}$ の最小点を求めよ。)

任意の $u \in X_{g_1}$ に対して、

$$I[u] := \frac{1}{2} |||u|||^2 - (f, u) - [g_2, u]$$

とおく。次のような変分問題 (すなわち汎函数の最小問題) を考える。

問題 (V)

Find $u \in X_{g_1}$ s.t. $I[u] = \min_{w \in X_{g_1}} I[w]$. (すなわち $I: X_{g_1} \to \mathbb{R}$ の最小点を求めよ。)

定理 2.7 ((W)⇔(V))

u が (W) の解 $\Leftrightarrow u$ が (V) の解.

任意の $u \in X_{g_1}$ に対して、

$$I[u] := \frac{1}{2} |||u|||^2 - (f, u) - [g_2, u]$$

とおく。次のような変分問題 (すなわち汎函数の最小問題) を考える。

問題 (V)

Find $u \in X_{g_1}$ s.t. $I[u] = \min_{w \in X_{g_1}} I[w]$. (すなわち $I: X_{g_1} \to \mathbb{R}$ の最小点を求めよ。)

定理 2.7 ((W)⇔(V))

u が (W) の解 $\Leftrightarrow u$ が (V) の解.

微分方程式の解が、変分問題の解になることがある。それが成り立つ時、**変分原理**が成り立つという。平凡社「世界大百科事典」によると、「一般的に、物理的な現象を法則として述べるのに関与するある基本スカラー量があって、これを最小にするという条件から法則が導かれる場合、この法則の記述の仕方を変分原理と呼んでいる。」

後の準備として、一つ公式を導いておく。

補題 2.8

 $u \in X_{g_1}, v \in X$ とするとき、任意の $t \in \mathbb{R}$ に対して

$$I[u+tv] = \frac{t^2}{2} ||v||^2 + t\{\langle u,v\rangle - (f,v) - [g_2,v]\} + I[u].$$

特に (t=1 として)

$$I[u+v]-I[u]=\frac{1}{2}||v||^2+\{\langle u,v\rangle-(f,v)-[g_2,v]\}.$$

証明は単純な計算である (二次関数の整理)。

2.4 変分原理 定理 2.7 の証明 (1)

定理 2.7 の証明

 (\Leftarrow) u を (V) の解とし、任意の $v \in X$ を取る。任意の $t \in \mathbb{R}$ に対して、 Γ_1 上で

$$u+tv=g_1+t\cdot 0=g_1.$$

ゆえに $u + tv \in X_{g_1}$. それゆえ

$$f(t) := I[u + tv] \qquad (t \in \mathbb{R})$$

が定義されるが、仮定よりこれは t=0 で最小値を取る。2 次関数

$$f(t) = I[u + tv] = \frac{t^2}{2} |||v||^2 + t \{\langle u, v \rangle - (f, v) - [g_2, v]\} + I[u]$$

が t=0 で最小となるには、1次の項の係数が 0 でなければならない:

$$\langle u,v\rangle - (f,v) - [g_2,v] = 0.$$

これは弱形式に他ならない。ゆえに u は問題 (W) の解である。

- (□) (個) (重) (重) (重) (9)(()

2.4 変分原理 定理 2.7 の証明 (2)

 (\Rightarrow) u が (W) の解とする。任意の $w \in X_{g_1}$ に対して、v := w - u とおくと、 Γ_1 上で

$$v = w - u = g_1 - g_1 = 0.$$

ゆえに $v \in X$. さらに

$$I[w] - I[u] = I[u + v] - I[u] = \frac{1}{2} ||v||^2 + \{\langle u, v \rangle - (f, v) - [g_2, v]\}.$$

u が弱形式を満たすという仮定から $\{\cdot\}=0$ となることに注意すると、

$$I[w] - I[u] = \frac{1}{2} ||v||^2 = \frac{1}{2} ||w - u||^2 \ge 0.$$

ゆえに I[u] は I の最小値である。すなわち u は問題 (V) の解である。

2.4 変分原理 定理 2.7 の証明 (2)

余談 2.9

要は 2 次関数 I[u] の最小化である。I の定義域は無限次元の空間であるが、そのような 汎関数に対しても、(普通の微分を拡張した) Fréchet 微分というものが定義される。実 は、I の Fréchet 微分は

$$I'[u] = \langle u, \cdot \rangle - (f, \cdot) - [g_2, \cdot].$$

(Cf.
$$i(u) = \frac{1}{2}u^2 - fu - g_2u$$
 のとぎ、 $i'(u) = u - f - g_2$)

そして、I'[u] = 0 は

$$\langle u, v \rangle - (f, v) - [g_2, v] = 0 \qquad (v \in X)$$

となる。つまり、

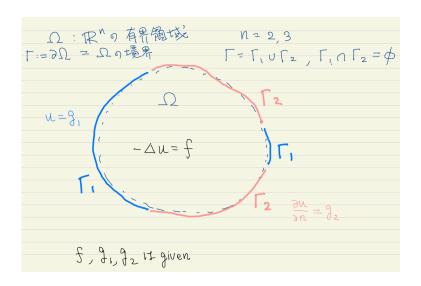
弱形式は、変分問題の汎関数の微分係数 = 0 という条件

である。

付録 スライド7ページ「2.1.2 変分法の基本補題」の説明の図

(準備中)

付録 スライド 10 ページ「2.2 Poisson 方程式の境界値問題」の説明の図



付録 補題2.8の証明

(1)
$$u \in X_{g_1}$$
, $v \in X$, $t \in \mathbb{R}$ とするとき、 Γ_1 上で

$$u+tv=g_1+t\cdot 0=g_1$$

であるから $u + tv \in X_{g_1}$.

$$\begin{split} I[u+tv] &= \frac{1}{2} \| u+tv \|^2 - (f,u+tv) - [g_2,u+tv] \\ &= \frac{1}{2} \langle u+tv,u+tv \rangle - (f,u) - t(f,v) - [g_2,u] - t[g_2,v] \\ &= \frac{1}{2} \left(\| u \|^2 + 2t \langle u,v \rangle + \| tv \|^2 \right) - t(f,v) - [g_2,u] - t[g_2,v] \\ &= \frac{1}{2} \| u \|^2 - (f,u) - [g_2,u] + t \left\{ \langle u,v \rangle - (f,v) - [g_2,v] \right\} + \frac{t^2}{2} \| v \|^2 \\ &= I[u] + t \left\{ \langle u,v \rangle - (f,v) - [g_2,v] \right\} + \frac{t^2}{2} \| v \|^2. \end{split}$$

付録 補題2.8の証明

(2) $u,w\in X_{g_1}$ とするとき、v:=w-u とおくと、 $w=u+1\cdot v$. また Γ_1 上で $v=w-u=g_1-g_1=0.$

ゆえに $v \in X$. (1) を用いて

$$I[w] - I[u] = I[u + 1 \cdot v] - I[u] = \frac{1^2}{2} ||v||^2 + 1 \cdot \{\langle u, v \rangle - (f, v) - [g_2, v]\}$$
$$= \frac{1}{2} ||v||^2 + \{\langle u, v \rangle - (f, v) - [g_2, v]\}.$$

参考文献

- [1] 菊地文雄:有限要素法概説, サイエンス社 (1980), 新訂版 1999.
- [2] Brezis, H.: 関数解析, 産業図書 (1988), (藤田 宏, 小西 芳雄 訳), 原著 は版を改めて、より内容豊富になっています。
- [3] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer (2011).