2018年度 数理リテラシー 中間試験問題

2018年6月20日4限施行 (15:25~17:00 の予定), 担当 桂田 祐史 ノート等持ち込み禁止, 解答用紙のみ提出

- 1. 次の各文を記号のみを用いて表せ。ただし、p,q は命題であり、A,B,X は集合である。
- (1) -2 は自然数ではないが整数であり、 $\sqrt{2}$ は有理数ではないが実数である。 (2) $z^2+2=0$ を満たす複素数 z が存在する。 (3) 「p ならば q である」は「p でないか、または q である」と同値である。 (4) A と B の合併集合が X に等しいためには、B の補集合が A に含まれることが必要十分である。 (5) 任意の実数 x に対して、ある実数 y が存在して、x+y=0 が成り立つ。
- **2.** (1) 真理値表を用いて、 $\neg(p \lor q) \equiv (\neg p) \land (\neg q), \neg(p \land q) \equiv (\neg p) \lor (\neg q)$ を示せ。
- (2) 「p ならば q である」の否定が「p であり、かつ q ではない」と同値であることを示せ。証明の方法は自分で選んで良い。
- 3. 次の各命題の真偽を述べ、真である場合は証明し、偽である場合はその否定命題を証明せよ。 (1) $(\forall x \in \mathbb{Z})$ $(\exists y \in \mathbb{Z})$ x > y (2) $(\forall x \in \mathbb{N})$ $(\exists y \in \mathbb{N})$ x > y
- 4. アルキメデスの公理「 $(\forall a>0)(\forall b>0)(\exists n\in\mathbb{N})\ na>b$ 」を用いて、 $(\forall x>0)\ (\exists n\in\mathbb{N})\ \frac{1}{n}< x$ を示せ。
- **5.** (1) 次の各命題の真偽を述べよ。(a) $\emptyset \in \{\emptyset\}$ (b) $\{\emptyset\} \in \{\emptyset\}$ (c) $\{\emptyset\} \subset \{\emptyset\}$
- (2) X を全体集合、A と B を X の部分集合とするとき、 $A \cup B$, $A \cap B$, $A \setminus B$, A^c , $A \times B$, 2^A の 定義を書け。また、それぞれを何と呼ぶか答えよ。
- (3) $A = \{1, 2, 3\}, B = \{4, 5\}$ とするとき、 $A \times B, 2^A$ を求めよ (要素を全て書き並べる方法で表せ)。
- (4) $A=\emptyset$ とするとき、 $B:=2^A,$ $C:=2^B$ を求めよ。
- **6.** (1) 集合族 $\{A_n \mid n \in \mathbb{N}\}$ の合併集合 $\bigcup_{n \in \mathbb{N}} A_n$, 共通部分 $\bigcap_{n \in \mathbb{N}} A_n$ の定義を書け。
- (2) 集合族 $\{A_n\mid n\in\mathbb{N}\}$ が $(\forall n\in\mathbb{N})$ $A_n\supset A_{n+1}$ を満たすとき、 $\bigcup_{n\in\mathbb{N}}A_n=A_1$ であることを示せ。
- $(3) \ A_n = \left\{ x \in \mathbb{R} \ \middle| \ 0 < x \leq \frac{1}{n} \right\} \, (n \in \mathbb{N}) \ \text{とするとき、} \bigcap_{n \in \mathbb{N}} A_n \ \text{を求めよ。}$
- 7. X を全体集合、A, B, C を X の部分集合とするとき、以下の命題を証明せよ。
 - $(1) \ A \cap B \subset A \quad (2) \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \quad (3) \ A \cap B = \emptyset \Leftrightarrow A \subset B^c$

注意事項

この面を表にして配ります。試験開始まで裏返さないこと。

- 筆記用具と時計以外はカバンにしまって下さい。
- 15:25 に試験を始め、17:00 に終了する予定です。もし始まりが遅れたら、その分終わりの時間もずらします。
- 問題は好きな順に解答して構いません。ただし一つの大問の解答は一ヶ所にまとめること。
- 解答用紙は裏面も使用して構いません。なるべく解答用紙 1 枚で済ませること。どうしても 足りなくなった場合は試験監督に申し出ること。
- 遅刻は開始してから 30分 まで認めます。開始してから 40分後から試験終了 10分前までは途中退室を認めます (手をあげて試験監督に知らせ、解答用紙を渡し、静かに荷物をまとめて退室して下さい)。

講評・解説 最初に言っておく。

ギブアップも油断もしないこと。

数理リテラシーで中間試験をする理由の第一は、この後どのように学習するかの参考にしてもらうためである。(単に成績をつけるだけならば、期末試験だけで十分である。学習効果を考えている。)自分の理解度・学習進度、弱点を把握して、この後の学習に生かしてもらいたい。

勉強は個人がするものではあり、人によって様子が異なるのは当たり前だが、それでも総じて次のことが言える。

- 早い段階で学んだことは (その後も時々出て来るせいか) 習熟度が高い。問題は (1番を除き) ほぼ学習した時間順に並んでいるので、前の番号ほど得点が高めである。 自分の答案を見て、どの辺が理解不十分になっているか、確認しよう。後半の問題は出来が悪くても (しかたない)、期末試験で同じような問題が出題されたら、解けるように準備すること。
- 宿題を通して注意したことについて、比較的よく対応してくれたという印象がある (例えば文字・記号はかなり読みやすくなっている)。宿題で注意されたことが修正されていない人も少数いるが、しっかり反省して直してもらいたい。
- 証明問題にてこずる人が多い。それは割と普通のことであるが、「こういう問題は、まずこうしてみよう」と言ったことを守れていない人が多い(いつもそれで解決するわけではないが、それが出来るようになることが第一歩なので、試験ではそれで解決する問題を相当な率で選んでいる)。その点はとても不満である(素直に言うことを聞いてほしい)。繰り返しになるが、
 - 量称記号 \forall , \exists で表された命題を証明を書くとき、次の手順が有効なことが多い。(i) 式に書かれた順番を守る、(ii) $\forall x$ が来たら「x を任意の○○とする」と書く、(iii) $\exists x$ が来たら以下に書かれている条件を満たす x の発見問題と考える。
 - 集合の包含関係 $A \subset B$ の証明を書くとき、次の手順が有効なことが多い。「x を A の任意の要素とすると」あるいは「 $x \in A$ とすると」から始めて、ゴールは「 $x \in B$ 」、その間を埋める作業をする。
 - 集合の等式 (相等関係) A=B の証明を書くとき、 $(A \subset B \ \ B \subset A \ \ c$ 示せば良いので)、 $x \in A$ から $x \in B$ を導くこと、 $x \in B$ から $x \in A \ \ c$ 夢 くこと、の両方をすれば良い。

140 点満点。4 は 10 点、5 は 28 点、6 は 22 点で、他はすべて 20 点。 答案用紙はコピーしてあるので、採点結果についてメールでも問い合わせ可能。

解答

1.

- $(1) -2 \notin \mathbb{N} \land -2 \in \mathbb{Z} \land \sqrt{2} \notin \mathbb{Q} \land \sqrt{2} \in \mathbb{R}. \ \sharp \, \hbar \, \& \, -2 \in \mathbb{Z} \setminus \mathbb{N} \land \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$
- $(2) (\exists z \in \mathbb{C}) z^2 + 2 = 0$
- $(3) \ p \Rightarrow q \equiv (\neg p) \lor q$

- (4) $A \cup B = X \Leftrightarrow B^c \subset A$
- (5) $(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) x + y = 0$

2.

(1) 真理値表を書く。

p	q	$p \lor q$	$\neg(p\vee q)$	$\neg p$	$\neg q$	$(\neg p) \wedge (\neg q)$
Τ	Т	Т	F	F	F	F
Τ	F	Т	F	\mathbf{F}	Т	F
F	Т	T	F	Τ	F	F
F	F	F	Т	Τ	Т	Τ

p	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$
Τ	Т	Т	F	F	F	F
Τ	F	F	Т	F	Т	T
F	Т	F	Τ	Τ	F	T
F	F	F	Т	Τ	Т	T

どちらも、4列目と7列目の真偽が一致するので $\neg(p \lor q) \equiv (\neg p) \land (\neg q), \neg(p \land q) \equiv (\neg p) \lor (\neg q).$

(2) (同値変形で証明する。) $p \Rightarrow q \equiv (\neg p) \lor q$ であるから、

$$\neg(p \Rightarrow q) \equiv \neg((\neg p) \lor q) \equiv \neg(\neg p) \land (\neg q) \equiv p \land (\neg q).$$

ゆえに $\neg(p \Rightarrow q) \equiv p \wedge (\neg q)$.

解説 今回は(2)で解き方を指定しなかったけれど、もし「同値変形で解け」と言われたら出来るようにしておいて下さい。

3.

- (1) 真。(証明) x を任意の整数とするとき、y = x 1 とおくと、y は整数であり、x > x 1 = y であるから x > y.
- (2) 偽。否定命題は $(\exists x \in \mathbb{N})$ $(\forall y \in \mathbb{N})$ $x \leq y$. (証明) x = 1 とおくと x は自然数であり、任意の自然数 y に対して、 $x = 1 \leq y$ であるから $x \leq y$.

解説

- (1) は 「どんな○数に対しても、それより大きい (小さい) ○数がある。」。 類題を授業でもやった し、過去問にも頻繁に登場している。証明もワンパターンである。
- (2) (1) と似ているけれど、(1) の証明中の y = x 1 が自然数にならないことがある。つまり x = 1 のとき、y = 0 でこれは自然数ではない。これに気づけば、否定命題の証明を最初から見当がつくだろう。

否定命題は、 $(\forall y \in \mathbb{N})$ $x \leq y$ を満たすような自然数 x が存在する、つまり自然数の最小値 x がある、という主張である。そういう意味が読み取れれば、x=1 であることが分かる。

4. x を任意の正の数とするとき、アルキメデスの公理によって、ある自然数 n が存在して、 $n \cdot x > 1$. 両辺を n(>0) で割って $x > \frac{1}{n}$.

5. (1) 真, 偽, 真

(2)

- $A \cup B = \{x \mid x \in A \lor x \in B\}$. $A \in B$ の合併集合 (または和集合).
- $A \cap B = \{x \mid x \in A \land x \in B\}$. $A \in B$ の共通部分 (または積集合, 交わり).
- $A \setminus B = \{x \mid x \in A \land x \notin B\}$. $A \in B$ の差集合.
- $A^c = \{x \mid x \in X \land x \notin A\}$. A の補集合.
- $2^A = \{C \mid C \subset A\}$. A の冪集合.
- $(3) A \times B = \{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\}, 2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{3,1\}, \{1,2,3\}\}.$
- (4) $B = \{\emptyset\}, C = \{\emptyset, \{\emptyset\}\}\$

解説

- (1) 宿題そのものだけど、相変わらず間違えた人が多い。
 - (a) a がどういう数学的対象であっても、 $a \in \{a\}$ は真である ($\{a\}$ の定義により、a は $\{a\}$ の要素である)。 $a = \emptyset$ でも、もちろん成り立つ。ゆえに $\emptyset \in \{\emptyset\}$.
 - (b) 任意の数学的対象 x, a に対して、 $x \in \{a\} \Leftrightarrow x = a$ が成り立つ。ゆえに $\{\emptyset\} = \emptyset$ であるか?という問になる。 $\{\emptyset\}$ は要素が1 個存在するので、空集合ではない。 $\{\emptyset\} \neq \emptyset$. ゆえに $\{\emptyset\} \neq \{\emptyset\}$.
 - (c) 任意の集合 A に対して、 $A \subset A$ が成り立つ。 $\{\emptyset\}$ は集合だから、当然 $\{\emptyset\} \subset \{\emptyset\}$.
- (2) さすがに出来は良かった。
- (3) 2^A は出来たけれど、 $A \times B$ が出来ない人が少なくない。全体を $\{\}$ でくくるのを忘れたり、順序対 $\{1,4\}$ でなくて集合 $\{1,4\}$ にしてみたり。宿題と同じミスをしているとしたら、学習の姿勢に反省が必要。
- (4) マンネリ気味なので、新しい問題を作ってみたら、大勢の人が間違えた。 $B = \{\emptyset, \{\emptyset\}\}$ という間違いが多かった。空集合の部分集合は空集合しかないので、 $B = 2^A = 2^\emptyset = \{\emptyset\}$. 要素数チェックをすると: A の要素数は 0 だから、 $B = 2^A$ の要素数は $2^0 = 1$ のはず。 空集合は意外に難しいね。

6.

- $(1) \bigcup_{n \in \mathbb{N}} A_n = \{x \mid (\exists n \in \mathbb{N}) \ x \in A_n\}, \bigcap_{n \in \mathbb{N}} A_n = \{x \mid (\forall n \in \mathbb{N}) \ x \in A_n\}.$
- (2) (任意の x に対して) $x \in \bigcup_{n \in \mathbb{N}} A_n$ とすると、ある自然数 n が存在して、 $x \in A_n$. 仮定より

$$A_n \subset A_{n-1} \subset A_{n-2} \subset \cdots \subset A_2 \subset A_1$$
 であるから、 $x \in A_1$. ゆえに $\bigcup_{n \in \mathbb{N}} A_n \subset A_1$.

(任意の x に対して) $x \in A_1$ とすると、n = 1 とおいたとき、 $n \in \mathbb{N}$ かつ $x \in A_n$. ゆえに $x \in \bigcup_{n \in \mathbb{N}} A_n$. ゆえに $A_1 \subset \bigcup_{n \in \mathbb{N}} A_n$.

以上より
$$\bigcup_{n\in\mathbb{N}}A_n=A_1$$
.

 $(3) \bigcap_{n\in\mathbb{N}} A_n = \emptyset$ である。もしも $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$ と仮定すると、ある $x\in\bigcap_{n\in\mathbb{N}} A_n$ が存在する。任意の自然数 n に対して、 $x\in A_n$. ゆえに $0< x\leq \frac{1}{n}$. x>0 であるから、アルキメデスの公理によって、ある自然数 n が存在して、 $\frac{1}{N}< x$ (問題 4 で証明した).これは任意の自然数 n に対して $x\leq \frac{1}{n}$ であることに矛盾する。ゆえに $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$.

解説 (1) はほぼ毎回出題している問題。間違えているケースは 2 つ。(a) そもそも集合になっていない。(b) \forall と \exists を逆にしている。

(2) と (3) は集合の等式の証明。(2) は割と標準的な証明が有効 $(x \in A)$ と仮定して $x \in B$ を示す, $x \in B$ と仮定して $x \in A$ を示す)である。それをしている人は少しミスをしていても、どんまい、次回頑張って。標準的でないことをして失敗した人はやり方を改めること。(3) は空集合で、証明は少し変則的で難しいかも $(x \in \emptyset)$??)。背理法を使うのが多分簡単。

7.

- (1) (任意の x に対して) $x \in A \cap B$ とすると、 $x \in A$ かつ $x \in B$. ゆえに $x \in A$ であるから、 $A \cap B \subset A$.
- (2) (任意の x に対して)

$$x \in (A \cap B) \cup C \Leftrightarrow (x \in A \cap B) \lor x \in C$$

$$\Leftrightarrow (x \in A \land x \in B) \lor x \in C$$

$$\Leftrightarrow (x \in A \lor x \in C) \land (x \in B \lor x \in C)$$
 (論理の分配法則を用いた)
$$\Leftrightarrow (x \in A \cap C) \land (x \in B \cap C)$$

$$\Leftrightarrow x \in (A \cap C) \cup (B \cap C)$$

であるから、 $(A \cap B) \cup C = (A \cap C) \cup (B \cap C)$.

(3)

$$A \cap B = \emptyset \Leftrightarrow \neg ((\exists x)x \in A \cap B)$$

$$\Leftrightarrow \neg ((\exists x)x \in A \land x \in B)$$

$$\Leftrightarrow (\forall x) \neg (x \in A \land x \in B)$$

$$\Leftrightarrow (\forall x)(\neg (x \in A)) \lor (\neg (x \in B))$$

$$\Leftrightarrow (\forall x)(\neg (x \in A)) \lor x \in B^{c}$$

$$\Leftrightarrow \forall x(x \in A \Rightarrow x \in B^{c})$$

$$\Leftrightarrow A \subset B^{c}.\blacksquare$$

- 解説 (1) と (2) は集合の等式の証明なので、こちらとしては例の「 $x \in A$ とすると… $x \in B, x \in B$ とすると $x \in A$ 」をやってほしい。
- (1) は、 $p \wedge q$ が真ならば、「かつ」(\wedge) の定義によって、p が真、というのを使うということで、簡単なはずだけど、苦労していた人が多い (簡単なことほど、何をやったら証明になるのか分かりにくい…基本に立ち返ってみよう)。

$$(A \cap B) \cup C = \{x \mid (x \in A \land x \in B) \lor x \in C\}$$
$$= \{x \mid (x \in A \lor x \in C) \land (x \in B \lor x \in C)\}$$
$$= (A \cup C) \cap (B \cup C)$$

のようにする答案が意外と多かった。上の解答例と本質的に同じと言えるけれど、式を書くのが面 倒なのか、はしょっているのがほとんどだった。

(3) は色々な答えの書き方があるけれど (上のはあくまでも一例)、とにかく自力で出来れば、この段階としては、十分なレベルに達したと (個人的に) 考えている。