数理リテラシー 宿題 6 (2015年5月28日出題)

__年 __ 組 ____番 氏名 _____ (担当桂田) 裏面利用可

- (1) 各自然数 n に対して、 $A_n := \left(-1 \frac{1}{n}, 1 + \frac{1}{n}\right), B_n := \left[-1 + \frac{1}{n}, 1 \frac{1}{n}\right]$ とおくとき、(a) $\bigcup_{n \in \mathbb{N}} A_n$,
- (b) $\bigcap_{n\in\mathbb{N}} A_n$, (c) $\bigcup_{n\in\mathbb{N}} B_n$, (d) $\bigcap_{n\in\mathbb{N}} B_n$ を求めよ。余裕があれば、(a), (b) の結果を証明せよ。
 - (2) A と B を任意の集合とするとき、 $A \cap B = \emptyset \Leftrightarrow A \subset B^c$ が成り立つことを証明せよ。
 - 前回配ったプリントの(2)の証明の最後

 $x \in B^c$. これは $x \in B$ と矛盾する。 ゆえに $A \subset B^c$.

は

 $x \in B^c$. これは $x \in B$ と矛盾する。ゆえに $A \cap B = \emptyset$.

の書き間違いです。混乱させたかもしれません。すみません。

- n が小さいときに集合を具体的に書いてみよう、と言ってある。(高校数学段階でも、例えば数列などでそういうことは言われているはずだ。) それをせずに間違えた答だけ書いてある答案は、ちょっと情けない。
- 相変わらずカンマ","をまともに書かない人が多い。日本語の「、」は、使うべきか使わないべきか曖昧で、好みの部分も大きいが、カンマはそうでない。カンマが必要なときに書かないのは、日本語の文章で「。」を書くべきところで書かないのと同じくらい変だと思って下さい。
- ヴェン図では証明にならない。
- 「共通部分は存在しない」と書いた人が多いけれど、任意の集合 A, B に対して、A と B の 共通部分 $A \cap B$ はいつでも存在する。それは普通は「共通部分は空集合である」の書き間違いとしか受け取ってもらえない。「共通部分は存在しない」と書いてある答案は、どうも日常語的な感覚で議論しているような雰囲気があって、意図がほとんど読み取れませんでした。
- 一般に次の命題が成り立つ。「 $A_1 \supset A_2 \supset \cdots$ ならば、 $\bigcup_{n \in \mathbb{N}} A_n = A_1$.」「 $B_1 \subset B_2 \subset \cdots$ ならば、 $\bigcap_{n \in \mathbb{N}} B_n = B_1$.」これはすぐ分かって欲しいし、証明も出来て欲しい。練習と思って証明を書いてみよう。(1) の (a) と (d) は、これからすぐ分かる。
- (1) の (b) と (c) は、無限個の集合の話なので、慣れないうちは少し難しいかも。(,) は [,] になって、[,] が (,) になるのは、不思議に感じられるかも (無限個でなければそうならない)。じっくりと考えて下さい。
- $A \cap B = \emptyset$ は、 $A^c \cup B^c = X$ と同値であるから (証明できますか?)、(2) は、 $A^c \cup B^c = X \Leftrightarrow A \subset B^c$ を示すという手もある。その方が考えやすいかもしれない (空集合の議論は分かりにくいので)。

実は (1) で B_n の定義は、印刷直前にとっさに変更したのですが、 $B_1=[0,0]$ となってしまうのを見落としていた。変ですね。多くの学生は $\{x\in\mathbb{R}\mid 0\leq x\leq 0\}=\{0\}$ と解釈してくれて、問題として成立したけれど、 $B_n=\left[-2+\frac{1}{n},2-\frac{1}{n}\right]$ のようにすべきだった。その場合は次のようになる。

$$\bigcup_{n \in \mathbb{N}} B_n = B_1 = (-2, 2), \quad \bigcap_{n \in \mathbb{N}} B_n = [-1, 1].$$

問6解答

(1) まず $A_1=(-2,2),\ A_2=(-3/2,3/2),\ A_3=(-4/3,4/3),\ A_4=(-5/4,5/4),\ \cdots$ であり、 $A_1\supset A_2\supset\cdots\supset A_n\supset A_{n+1}\supset\cdots$ で、区間の左端と右端はそれぞれ -1 と 1 に近づく。

また $B_1 = [0,0] = \{0\}$, $B_2 = [-1/2,1/2]$, $B_3 = [-2/3,2/3]$, \cdots であり、 $B_1 \subset B_2 \subset \cdots$ であり、区間の左端と右端はそれぞれ -1 と 1 に近づく。

(a)
$$\bigcup_{n \in \mathbb{N}} A_n = A_1 = (-2, 2)$$
 (b) $\bigcap_{n \in \mathbb{N}} A_n = [-1, 1]$ (c) $\bigcup_{n \in \mathbb{N}} B_n = (-1, 1)$ (d) $\bigcap_{n \in \mathbb{N}} B_n = B_1 = \{0\}$

- (a) の証明。
 - (i) x を $\bigcap_{n\in\mathbb{N}}A_n$ の任意の要素とする。ある自然数 n が存在して、 $x\in A_n$. $A_n\subset A_1$ であるから、 $x\in A_1$. ゆえに $\bigcup_{n\in\mathbb{N}}A_n\subset A_1$.
- (ii) x を A_1 の任意の要素とする。(n=1 とおくと、 $n\in\mathbb{N}$ かつ $x\in A_n$ であるから) $(\exists n\in\mathbb{N})$ $x\in A_n$ が成立する。ゆえに $x\in\bigcup_{n\in\mathbb{N}}A_n$. ゆえに $A_1\subset\bigcup_{n\in\mathbb{N}}A_n$.
- (i), (ii) から $\bigcup_{n\in\mathbb{N}} A_n = A_1 = (-2, 2)$.
- (b) の証明。
- (i) x を $\bigcap_{n\in\mathbb{N}} A_n$ の任意の要素とする。任意の自然数 n に対して、 $x\in A_n=(-1-1/n,1+1/n)$. ゆえに |x|<1+1/n. $|x|\le 1$ を証明するため、背理法を用いる。|x|>1 と仮定すると、|x|-1>0 であるから、アルキメデスの公理によって、 $(\exists N\in\mathbb{N})\ N(|x|-1)>1$. これから $|x|>1+\frac{1}{N}$. これは矛盾である。ゆえに $|x|\le 1$. すなわち $x\in [-1,1]$. ゆえに $\bigcap_{n\in\mathbb{N}} A_n\subset [-1,1]$.
- (ii) x を [-1,1] の任意の要素とする。任意の自然数 n に対して、 $\frac{1}{n}>0$ であるから、 $-1-\frac{1}{n}<-1\leq x\leq 1<1+\frac{1}{n}$. ゆえに $x\in (-1-1/n,1+1/n)=A_n$. ゆえに $x\in \bigcap_{n\in \mathbb{N}}A_n$. ゆえに $[-1,1]\subset \bigcap_{n\in \mathbb{N}}A_n$.
- (i), (ii) から $\bigcap_{n\in\mathbb{N}}A_n=[-1,1]$.
- (2) (⇒) $A \cap B = \emptyset$ と仮定する。 $x \in A$ の任意の要素とする。 $x \in B^c$ を示すため、背理法を用いる。 $x \in B^c$ でない と仮定すると、 $x \in B$. ゆえに $x \in A \cap B$ であるので、 $A \cap B \neq \emptyset$. これは仮定に矛盾する。ゆえに $x \in B^c$ である。従って $A \subset B^c$.
 - (\Leftarrow) $A \subset B^c$ と仮定する。 $A \cap B = \emptyset$ を示すため、背理法を用いる。 $A \cap B \neq \emptyset$ とすると、 $x \in A \cap B$ を満たす x が存在する。ゆえに $x \in A$ かつ $x \in B$ である。前者と $A \subset B^c$ から $x \in B^c$. これは $x \in B$ と矛盾する。ゆえに $A \cap B = \emptyset$. \blacksquare

(別解)

$$A \cap B = \emptyset \Leftrightarrow \neg ((\exists x)x \in A \cap B)$$

$$\Leftrightarrow (\forall x) \neg (x \in A \land x \in B)$$

$$\Leftrightarrow (\forall x) \neg ((x \in A) \land (x \in B))$$

$$\Leftrightarrow (\forall x) (\neg (x \in A)) \lor (\neg (x \in B))$$

$$\Leftrightarrow (\forall x) \neg (x \in A) \lor x \in B^{c}$$

$$\Leftrightarrow (\forall x)x \in A \Rightarrow x \in B^{c}$$

$$\Leftrightarrow A \subset B^{c}.\blacksquare$$