複素関数練習問題 No. 5

https://m-katsurada.sakura.ne.jp/complex/

桂田 祐史

2017年11月10日, 2023年8月31日

冪級数の項別微分可能性、正則性、展開の一意性

問題 86. 収束冪級数について"係数比較"が可能なこと、つまり $c \in \mathbb{C}, r > 0$, 数列 $\{a_n\}_{n>0}$ と $\{b_n\}_{n>0}$ に対して、

$$\sum_{n=0}^{\infty} a_n (z - c)^n = \sum_{n=0}^{\infty} b_n (z - c)^n \quad (|z - c| < r)$$

が成り立てば、 $a_n = b_n \ (n = 0, 1, 2, \cdots)$ であることを示せ。

Taylor 展開 $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (z-c)^n$ は冪級数展開であるが、冪級数展開はこの問題で見たように一通りしかない ので、どういうやり方であっても冪級数の形に変形できれば、それは Taylor 展開である。つまり「Taylor 展開 = 冪級 数展開」である。

問題 87. (1) 次の各関数を 0 のまわりでテーラー展開 (冪級数展開) し、収束半径を求めよ

(a)
$$\frac{1}{z+4}$$
 (b) $\frac{1}{(z-i)^2}$ (c) $\frac{1}{z^2+1}$ (d) $f'(z) = \frac{1}{z^2+1}$, $f(0) = 0$ を満たす f (e) $\frac{z^3-3z^2-z+5}{z^2-5z+6}$

$$((b),(d)$$
 は微分積分を考えてみる。 (e) は部分分数分解すると簡単になる。 (e) は $\frac{1}{z+3}$ を 1 のまわりでテーラー展開し、収束半径を求めよ。

問題 88. 次の冪級数の和を求めよ $(\sum_{i=1}^{\infty}$ を用いずに表せ)。

$$(1) \sum_{n=0}^{\infty} z^n \quad (2) \sum_{n=1}^{\infty} n z^{n-1} \quad (3) \sum_{n=1}^{\infty} n z^n \quad (4) \sum_{n=1}^{\infty} n^2 z^n \quad (結局、任意の \; k \in \mathbb{N} \; に対し \sum_{n=1}^{\infty} n^k z^n \; が求まる。)$$

問題 89. e^z , $\cos z$, $\sin z$ を冪級数で定義するとき、 $(e^z)' = e^z$, $(\cos z)' = -\sin z$, $(\sin z)' = \cos z$ を確かめよ。

問題 90.
$$z \in \mathbb{C}$$
 に対して $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ であることを示せ。

問題 91. (1) $f(z) = e^z$ が f'(z) = f(z), f(0) = 1 を満たすことを用いて、任意の $c \in \mathbb{C}$ に対して、f(z)f(c-z) = f(c)であることを示せ。(2) 任意の $a,b\in\mathbb{C}$ に対して $e^ae^b=e^{a+b}$ であることを示せ。

(式変形による(2)の証明も知られているが、(1)から導ける。なお、指数関数の指数法則や三角関数の加法定理は、 後で学ぶ「一致の定理」を用いる証明も有名である。)

問題 92. $(e^z$ を冪級数で定義したとき) $x, y \in \mathbb{R}$ に対して、 $e^{x+iy} = e^x (\cos y + i \sin y)$ であることを示せ。

問題 93. p,q が複素数の定数であり、2 次方程式 $\lambda^2+p\lambda+q=0$ が相異なる 2 根 α,β を持つとする。このとき微分 方程式 $\frac{d^2w}{dz^2}+p\frac{dw}{dz}+qw=0$ の解 w=f(z) が原点のまわりで冪級数展開可能ならば、 $f(z)=C_1e^{\alpha z}+C_2e^{\beta z}$ (C_1,C_2 はある定数) と表せることを示せ 1 。

¹ 実変数の範囲で微分方程式 $\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=0$ を考えると、一般解は $y=C_1e^{\alpha x}+C_2e^{\beta x}$ (C_1,C_2) は任意定数)であることは常微分方程式を学んだとき、必ず教わることであるが、それは関数論の世界でも成り立つ、ということである。後で「正則ならば冪級数展開可能」という定理を

問題 94. 任意の冪級数 $\sum_{n=0}^{\infty}a_n(z-c)^n$ と、任意の自然数 $p\in\mathbb{N}$ に対して、2 つの冪級数

$$\sum_{n=0}^{\infty} a_n (z-c)^n, \quad \sum_{n=0}^{\infty} a_n (z-c)^{n+p} \quad \left(= \sum_{n=p}^{\infty} a_{n-p} (z-c)^n \right)$$

の収束発散は一致する (収束する $z \in \mathbb{C}$ 全体の集合が等しい)。特に収束半径、収束円も一致する。 — 以上を証明せよ。

問題 95. $\sum_{n=0}^{\infty}a_n(z-c)^n$, $\sum_{n=0}^{\infty}b_n(z-c)^n$ の収束半径がそれぞれ ρ_1 , ρ_2 であるとするとき、以下の問に答えよ。

- (1) $\rho_1 \neq \rho_2$ であれば、 $\sum_{n=0}^{\infty} (a_n + b_n) (z c)^n$ の収束半径は $\min \{\rho_1, \rho_2\}$ である。
- (2) $\rho_1=\rho_2$ であれば、 $\sum_{n=0}^{\infty}\left(a_n+b_n\right)(z-c)^n$ の収束半径は ρ_1 以上である。収束半径が ρ_1 より大きくなる例をあげよ。

初等関数

問題 96. 以下の方程式を ($\mathbb C$ 内で) 解け (解を書くのは簡単なものが多いが、漏れがないことが分かるように解くこと)。 (1) $e^z=1$ (2) $e^z=-1$ (3) $e^z=1+\sqrt{3}i$ (4) $\sin z=0$ (5) $\sin z=2$

ヒント: (1),(2),(3) は複素関数の log を使っても良いし、 $\exp(x+iy)=e^x(\cos y+i\sin y)$ を用いて、実関数 e^x , $\cos y$, $\sin y$ の話に持ち込んでも良い。(後者の方が後々忘れにくいとは思うけれど、どちらでもよい。) (4) と (5) は e^{iz} の話に持ち込む。

問題 97. $\cos z$, $\sin z$ の加法定理を証明せよ。

問題 98. (1) $\cosh(iz) = \cos z$, $\sinh(iz) = i\sin z$, $\tanh(iz) = i\tan z$, $\coth(iz) = -i\cot z$ であることを示せ。 (2) $\cos(iz) = \cosh z$, $\sin(iz) = i\sinh z$, $\tan(iz) = i\tanh z$, $\cot(iz) = -i\coth z$ であることを示せ。

問題 99. (逆三角関数、逆双曲線関数は、 $\sqrt{}$ や \log を使って表せることを理解するための問題)

- (1) $w \in \mathbb{C}$ が与えられたとき、 $w = \sinh z$ を満たす z を求めよ (w で表せ)。ただし $\sinh z := \frac{e^z e^{-z}}{2}$ とする。(arcsinh という記号は用いず、四則と $\sqrt{}$ で表すこと。)
- (2) $w \in \mathbb{C}$ が与えられたとき、 $w = \sin z$ を満たす z を求めよ。(arcsin や \sin^{-1} という記号は用いず…)
- (3) $w \in \mathbb{C}$ が与えられたとき、 $w = \tan z$ を満たす z を求めよ。(arctan や \tan^{-1} という記号は用いず…)

解答 86. |z-c| < r を満たす z に対して、 $f(z) := \sum_{n=0}^{\infty} a_n (z-c)^n = \sum_{n=0}^{\infty} b_n (z-c)^n$ とおくと、 $f : D(c;r) \to \mathbb{C}$ は正則で、冪級数の項別微分定理から、

$$a_n = \frac{f^{(n)}(c)}{n!} \quad (n \in \mathbb{N} \cup \{0\})$$

が得られる。これは $\{b_n\}$ についても同じで

$$b_n = \frac{f^{(n)}(c)}{n!} \quad (n \in \mathbb{N} \cup \{0\}).$$

ゆえに任意の n に対して $a_n = b_n$.

解答 87. (1) (なるべくゆっくりと式変形する。目標は $\sum_{n=0}^{\infty}a_nz^n$ の形にする $(a_n$ を求める) ことである。)

(a) 等比級数の和の公式を用いて、

$$\frac{1}{z+4} = \frac{1}{4+z} = \frac{1}{4} \cdot \frac{1}{1+\frac{z}{4}} = \frac{1}{4} \cdot \frac{1}{1-\left(-\frac{z}{4}\right)} = \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{z}{4}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} z^n.$$

収束 \Leftrightarrow | 公比 | < $1 <math>\Leftrightarrow$ $\left|\frac{-z}{4}\right|$ < $1 \Leftrightarrow |z|$ < 4 であるから、収束半径は 4.

(b) 等比級数の和の公式を用いて、

$$\frac{1}{z-i} = \frac{1}{-i+z} = \frac{1}{-i} \cdot \frac{1}{1+iz} = i \cdot \frac{1}{1-(iz)} = i \sum_{n=0}^{\infty} (-iz)^n = \sum_{n=0}^{\infty} (-1)^n i^{n+1} z^n$$

である。収束 \Leftrightarrow | 公比 | < 1 \Leftrightarrow | -iz | < 1 \Leftrightarrow |z | < 1 であるから、収束半径は 1. これから、

$$\frac{1}{(z-i)^2} = -\left(\frac{1}{z-i}\right)' = -\left(\sum_{n=0}^{\infty} (-1)^n i^{n+1} z^n\right)' = -\sum_{n=0}^{\infty} (-1)^n i^{n+1} n z^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} i^{n+1} n z^{n-1}$$

$$= \sum_{m=0}^{\infty} (-1)^m i^{m+2} (m+1) z^m = \sum_{n=0}^{\infty} (-1)^n i^{n+2} (n+1) z^n = \sum_{n=0}^{\infty} (-1)^{n-1} i^n (n+1) z^n.$$

収束半径は項別微分しても変わらないので、1.

(c) 等比級数の和の公式を用いて、

$$\frac{1}{z^2+1} = \frac{1}{1+z^2} = \frac{1}{1-(-z^2)} = \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n}.$$

 $a_n \not \sim$

$$a_n = \begin{cases} 0 & (n は奇数) \\ (-1)^k & (n = 2k \ (k = 0, 1, ...)) \end{cases}$$

で定めると、

$$\frac{1}{z^2 + 1} = \sum_{n=0}^{\infty} a_n z^n.$$

収束 \Leftrightarrow | 公比 | < 1 \Leftrightarrow | $-z^2$ | < 1 \Leftrightarrow |z| < 1 であるから、収束半径は 1.

(d) $\left(\operatorname{Tan}^{-1}z\right)'=\frac{1}{z^2+1}$ である。特に $\operatorname{Tan}^{-1}z$ は 0 の近傍で正則であるから、z=0 のまわりで Taylor 展開できる:

$$\operatorname{Tan}^{-1} z = \sum_{n=0}^{\infty} b_n z^n \quad (|z| < \exists r).$$

$$\sum_{n=0}^{\infty} (n+1)b_{n+1}z^n = \left(\operatorname{Tan}^{-1}z\right)' = \frac{1}{z^2+1} = \sum_{n=0}^{\infty} a_n z^n.$$

3

ただし a_n は (c) で出て来たものである。ゆえに

$$(n+1)b_{n+1} = \begin{cases} 0 & (n \text{ は奇数})\\ (-1)^k & (n=2k \text{ } (k=0,1,\dots)). \end{cases}$$
 (n は偶数)

$$b_n = \begin{cases} 0 & (n \text{ は偶数}) \\ \frac{(-1)^k}{2k+1} & (n=2k+1 \ (k=0,1,\dots)). \end{cases}$$

(e) $f(z) := \frac{z^3 - 3z^2 - z + 5}{z^2 - 5z - 6}$ とおく。f(z) の分子 $z^3 - 3z^2 - z + 5$ を分母 $z^2 - 5z - 6$ で割ると、商 z + 2,余り 3z - 7 であるから、

$$f(z) = z + 2 + \frac{3z - 7}{z^2 - 5z - 6}$$

右辺第 3 項の分母は $z^2-5z-6=(z-2)(z-3)$ と因数分解できるので、

$$\frac{3z-7}{z^2-5z-6} = \frac{A}{z-2} + \frac{B}{z-3}$$

を満たす定数 A, B が存在する。これから A=1, B=2. ゆえに

$$f(z) = z + 2 + \frac{1}{z - 2} + \frac{2}{z - 3}.$$

z+2 の Taylor 展開はそれ自身である。

$$\frac{1}{z-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{z}{2}} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} \quad (\text{\mathbb{V}} \ \text{$\stackrel{\Leftrightarrow}{=}$} \ |z| < 2).$$

$$\frac{1}{z-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{z}{3}} = -\sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}} \quad (\text{WF} \Leftrightarrow |z| < 3).$$

f(z) の z=0 のまわりの Taylor 展開の収束半径は、0 と $\{2,3\}$ との距離 2 である。そして、

$$\begin{split} f(z) &= z + 2 - \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} - 2 \sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}} \\ &= \left(2 - \frac{1}{2} - 2 \cdot \frac{1}{3}\right) + \left(1 - \frac{1}{2^2} - 2 \cdot \frac{1}{3^2}\right) z - \sum_{n=2}^{\infty} \left(\frac{1}{2^{n+1}} + \frac{2}{3^{n+1}}\right) z^n \\ &= \frac{5}{6} + \frac{19}{36} z - \sum_{n=2}^{\infty} \left(\frac{1}{2^{n+1}} + \frac{2}{3^{n+1}}\right) z^n. \end{split}$$

(2) 目標は $\sum_{n=0}^{\infty} a_n (z-1)^n$ の形に表すことである。

等比級数の和の公式を用いて、

$$\frac{1}{z+3} = \frac{1}{(z-1)+4} = \frac{1}{4} \cdot \frac{1}{1+\frac{z-1}{4}} = \frac{1}{4} \cdot \frac{1}{1-\left(-\frac{z-1}{4}\right)} = \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{z-1}{4}\right)^n$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (z-1)^n.$$

収束 \Leftrightarrow | 公比 | < $1 <math>\Leftrightarrow$ | $-\frac{z-1}{4}|$ < $1 <math>\Leftrightarrow$ |z-1| < 4 であるから、収束半径は 4.

解答 88.

(1) 公比が z の等比級数であるから、収束の条件は |z| < 1 で、そのとき

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$

収束円は D(0;1).

(2) (1) の冪級数を項別に微分したものであるので

$$\sum_{n=1}^{\infty} nz^{n-1} = \left(\sum_{n=0}^{\infty} z^n\right)' = \left(\frac{1}{1-z}\right)' = \left(-(z-1)^{-1}\right)' = (z-1)^{-2} = \frac{1}{(z-1)^2}.$$

収束円は (1) と同じで D(0;1).

(3) (2) の冪級数にzをかけたものになっている。

$$\sum_{n=1}^{\infty} nz^n = z \sum_{n=1}^{\infty} nz^{n-1} = \frac{z}{(z-1)^2}.$$

収束円は(2)と同じで D(0;1).

(4) (3) の級数を項別微分して z をかけたものである。

$$\sum_{n=1}^{\infty} n^2 z^n = z \times \left(\sum_{n=1}^{\infty} n z^n\right)' = z \left(\frac{z}{(z-1)^2}\right)' = z \frac{(z-1)^2 \cdot 1 - 2(z-1) \cdot z}{(z-1)^4} = z \frac{(z-1) - 2z}{(z-1)^3} = -\frac{z(z+1)}{(z-1)^3}.$$

収束円は (3) と同じで D(0;1). ■

要するに「n をかける \longleftrightarrow 微分して z をかける」ということ。数学検定の問題見本で見かけた「 $\sum_{n=1}^\infty \frac{n^2}{n!}$ を求めよ。」という問題を来年度は問題に含めよう。

ちなみに Mathematica はこういう級数の和を計算してくれる。収束条件は表示してくれないが、簡略の検算にはなる。Sum [n^2 z^n, {n,1,Infinity}]) とすると $-\frac{z(1+z)}{(-1+z)^3}$ という結果を返す。 \blacksquare

解答 89. どれでも同じだから、一つだけやっておく。

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

である。 $n\in\mathbb{N}$ のとき $(z^n)'=nz^{n-1},\, n=0$ のとき $(z^n)'=(1)'=0$ であるので

$$(e^z)' = \sum_{n=0}^{\infty} \left(\frac{z^n}{n!}\right)' = \sum_{n=1}^{\infty} \frac{nz^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{m=0}^{\infty} \frac{z^m}{m!} = e^z. \blacksquare$$

解答 90. 冪級数展開

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad \cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, \quad \sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$

を使って証明する。(こういう問題は何を使ってよいかで解答の仕方が異なるので、本当は問題文にそれを書かないといけない。一致の定理を使って証明せよ、という問題もあり得る。)

k を整数とするとき、

$$i^{n} = \begin{cases} 1 & (n \equiv 0 \pmod{4}) \\ i & (n \equiv 1 \pmod{4}) \\ -1 & (n \equiv 2 \pmod{4}) \\ -i & (n \equiv 3 \pmod{4}) \end{cases}, \quad i^{2k} = (i^{2})^{k} = (-1)^{k}$$

であるから

$$i^{n} + (-i)^{n} = [1 + (-1)^{n}] i^{n} = \begin{cases} 0 & (n \text{ が奇数}) \\ 2 \cdot i^{n} & (n \text{ が偶数}) \end{cases} = \begin{cases} 0 & (n \text{ が奇数}) \\ (-1)^{k}2 & (n \text{ が偶数}, n = 2k), \end{cases}$$
$$i^{n} - (-i)^{n} = [1 - (-1)^{n}] i^{n} = \begin{cases} 0 & (n \text{ が偶数}) \\ 2 \cdot i^{n} & (n \text{ が奇数}) \end{cases} = \begin{cases} 0 & (n \text{ が偶数}) \\ (-1)^{k}2i & (n \text{ が奇数}, n = 2k + 1).n \end{cases}$$

ゆえに

$$\frac{e^{iz} + e^{-iz}}{2} = \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} + \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{i^n + (-i)^n}{2} \frac{z^n}{n!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} = \cos z,$$

$$\frac{e^{iz} - e^{-iz}}{2i} = \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{i^n - (-i)^n}{2i} \frac{z^n}{n!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \sin z. \blacksquare$$

解答 91.

(1) F(z) := f(z) f(c-z) とおく。積の微分法と合成関数の微分法と仮定 f' = f により

$$F'(z) = (f(z)f(c-z))' = (f(z))' \cdot f(c-z) + f(z) \cdot (f(c-z))' = f'(z)f(c-z) + f(z)(-f'(c-z))$$
$$= f(z)f(c-z) - f(z)f(c-z) = 0.$$

ゆえに F は定数関数である。 $F(0) = f(0)f(c) = 1 \cdot f(c) = f(c)$. ゆえに $F(z) \equiv f(c)$. すなわち $f(z)f(c-z) \equiv f(c)$.

(2) ((1) で言っているのは、 $(\forall c \in \mathbb{C})$ $(\forall z \in \mathbb{C})$ f(z)f(c-z)=f(c) ということである。) 任意の $a,b \in \mathbb{C}$ に対して、c=a+b, z=a とおくと、c-z=b であるから、f(a)f(b)=f(a+b). すなわち $e^ae^b=e^{a+b}$. \blacksquare

解答 92. (念のため状況の説明: 講義では早めに指数関数を使いたかったので、 $e^{x+iy}:=e^x(\cos y+i\sin y)$ $(x,y\in\mathbb{R})$ と定めたが、ここでは指数関数を $e^z:=\sum_{n=0}^\infty \frac{z^n}{n!}$ と定義し、この冪級数の収束半径が ∞ であることは確認済みとする。また、指数法則も証明済みとする。)

まず指数法則により、任意の $x, y \in \mathbb{R}$ に対して

$$e^{x+iy} = e^x e^{iy}.$$

収束する級数は 2 項ずつまとめて和を取ることが出来る (部分和の作る数列が収束列であるから、その部分列は同じ極限を持つ収束列である)。 ゆえに

$$e^{iy} = \sum_{n=0}^{\infty} \frac{\left(iy\right)^n}{n!} = \sum_{k=0}^{\infty} \left(\frac{i^{2k}}{(2k)!}y^{2k} + \frac{i^{2k+1}}{(2k+1)!}y^{2k+1}\right) \\ = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{(2k)!}y^{2k} + i\frac{(-1)^k}{(2k+1)!}y^{2k+1}\right).$$

一方、

$$\cos y = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} y^{2k}, \quad \sin y = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} y^{2k+1}$$

であるから、

$$e^{iy} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} y^{2k} + i \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} y^{2k+1} = \cos y + i \sin y.$$

ゆえに

$$e^{x+iy} = e^x (\cos y + i \sin y)$$
.

(注: 絶対収束する級数 $\sum_{n=0}^\infty a_n$ は、自由な順番で和を取ることが出来て、例えば $\sum_{n=0}^\infty a_n = \sum_{k=0}^\infty a_{2k} + \sum_{k=0}^\infty a_{2k+1}$ が成り立つ。このことを用いると、もっとストレートに証明出来る。)

解答 93. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ が収束冪級数とすると、 $(n+2)(n+1)a_{n+2} + (n+1)a_{n+1} + a_n = 0$ $(n=0,1,\cdots)$ が導かれる。ゆえに $(n+2)!a_{n+2} + (n+1)!a_{n+1} + n!a_n = 0$. 従って、 $b_n := n!a_n$ とおくと、 $b_{n+2} + pb_{n+1} + qb_n = 0$ が成り立つ。(定数係数の線形差分方程式の一般論から)ゆえに適当な C_1 , C_2 を取ると、 $b_n = C_1\alpha^n + C_2\beta^n$ $(n=0,1,\cdots)$ が成り立つ。これから $f(z) = \sum_{n=0}^{\infty} \frac{C_1\alpha^n + C_2\beta^n}{n!} z^n = C_1 \sum_{n=0}^{\infty} \frac{(\alpha z)^n}{n!} + C_2 \sum_{n=0}^{\infty} \frac{(\beta z)^n}{n!} = C_1 e^{\alpha z} + C_2 e^{\beta z}$.

解答 94. どちらの冪級数も、z=c に対しては収束する。 $z\neq c$ の場合を考える。

次が成り立つことに注意する。 「 $\sum_{n=1}^\infty A_n$ が収束するならば、任意の $\lambda\in\mathbb{C}$ に対して、 $\sum_{n=1}^\infty \lambda A_n$ も収束し、 $\sum_{n=1}^\infty \lambda A_n=$

$$\lambda \sum_{n=1}^{\infty} A_n$$
.

任意の $z\in\mathbb{C}\setminus\{c\}$ に対して、 $\lambda=(z-c)^p$ として適用することで、 $\sum_{n=0}^\infty a_n(z-c)^n$ が収束するならば、 $\sum_{n=0}^\infty a_n(z-c)^{n+p}$ も収束することが分かる。

任意の $z\in\mathbb{C}\setminus\{c\}$ に対して、 $\lambda=(z-c)^{-p}$ として適用することで、 $\sum_{n=0}^{\infty}a_n(z-c)^{n+p}$ が収束するならば、 $\sum_{n=0}^{\infty}a_n(z-c)^n$ も収束することが分かる。

結局、任意の $z \in \mathbb{C} \setminus \{0\}$ に対して、

$$\sum_{n=0}^{\infty}a_{n}(z-c)^{n+p}$$
 が収束する \Leftrightarrow $\sum_{n=0}^{\infty}a_{n}(z-c)^{n}$ も収束する

が成り立つ。特に2つの冪級数の収束半径、収束円は一致する。 ■

解答 96. (実関数としての指数関数と、複素関数としての指数関数を区別するため、前者を e^x , 後者を $\exp z$ と表す約束で書いてみる。 — ここだけのローカル・ルール)

(1) (log がどういうものかまだ知らない場合の解答) z の実部と虚部をそれぞれ x,y と表す。 $\exp z = \exp(x+iy) = e^x(\cos y + i\sin y)$ で、 $|\exp z| = e^x$ に注意すると、

$$\exp z = 1 \Leftrightarrow e^x (\cos y + i \sin y) = 1$$

$$\Leftrightarrow e^x = 1 \quad \text{and} \quad \cos y + i \sin y = 1$$

$$\Leftrightarrow e^x = 1 \quad \text{and} \quad \cos y = 1 \quad \text{and} \quad \sin y = 0$$

$$\Leftrightarrow x = 0 \quad \text{and} \quad (\exists n \in \mathbb{Z}) \quad y = 2n\pi$$

$$\Leftrightarrow (\exists n \in \mathbb{Z}) \quad z = 2n\pi i.$$

 $(\log$ がどういうものか知っている場合の解答) 複素多価関数としての $\log 1$ は何か、という問題である。 $1=1e^{i0}$ が 1 の極形式であるから

$$\log 1 = \log 1 + i(0 + 2n\pi) = 2n\pi i \quad (n \in \mathbb{Z}).$$

(2) (log がどういうものかまだ知らない場合の解答) $\exp \pi i = -1$ であるから、

$$\exp z = -1 \Leftrightarrow \exp z \exp \pi i = 1$$
$$\Leftrightarrow \exp(z + \pi i) = 1$$
$$\Leftrightarrow (\exists n \in \mathbb{Z}) \quad z + \pi i = 2n\pi i$$
$$\Leftrightarrow (\exists n \in \mathbb{Z}) \quad z = (2n - 1)\pi i.$$

 $(\log$ がどういうものか知っている場合の解答) 複素多価関数としての $\log(-1)$ は何か、という問題である。 $-1=1e^{i\pi}$ が -1 の極形式であるから

$$\log(-1) = \log 1 + i(\pi + 2n\pi) = (2n+1)\pi i \quad (n \in \mathbb{Z}).$$

(3) $\sin z = \frac{\exp(iz) - \exp(-iz)}{2i}$ であるから、

$$\sin z = 0 \Leftrightarrow \exp(iz) - \exp(-iz) = 0$$
$$\Leftrightarrow \exp(2iz) = 1$$
$$\Leftrightarrow \exists n \in \mathbb{Z} \quad \text{s.t.} \quad 2iz = 2n\pi i$$
$$\Leftrightarrow \exists n \in \mathbb{Z} \quad \text{s.t.} \quad z = n\pi.$$

(あるいは $w:=\exp(iz)$ について $w-\frac{1}{w}=0$ から、 $w^2-1=0$. これから w=1 または w=-1. 前者から $z=2n\pi$ $(n\in\mathbb{Z})$, 後者から $z=(2m-1)\pi$ $(m\in\mathbb{Z})$. まとめて $z=n\pi$ $(n\in\mathbb{Z})$.

$$(4) \sin z = rac{\exp(iz) - \exp(-iz)}{2i}$$
 であるから、途中で $w := \exp(iz)$ とおくと、
$$\sin z = 2 \Leftrightarrow rac{\exp(iz) - \exp(-iz)}{2i} = 2$$

$$\Leftrightarrow \exp(iz) - \exp(-iz) = 4i$$

$$\Leftrightarrow w - rac{1}{w} = 4i$$

$$\Leftrightarrow w^2 - 4iw - 1 = 0$$

$$\Leftrightarrow w = 2i \pm \sqrt{(2i)^2 - (-1)} = (2 \pm \sqrt{3})i = (2 \pm \sqrt{3})e^{\pi i/2}.$$

ただし、 $a,b,c \in \mathbb{C}, a \neq 0$ とするとき、

$$az^2 + bz + c = 0$$
 \Leftrightarrow $z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

が成り立つことを用いた。

 $r > 0, \theta \in \mathbb{R}$ とするとき、

$$\exp z = re^{i\theta} \quad \Leftrightarrow \quad \exists n \in \mathbb{Z} \quad \text{s.t.} \quad z = \log r + i(\theta + 2n\pi)$$

であることを使うと、

$$\sin z = 2 \Leftrightarrow \exists n \in \mathbb{Z} \quad \text{s.t.} \quad iz = \log\left(2 \pm \sqrt{3}\right) + i\left(\frac{\pi}{2} + 2n\pi\right)$$
$$\Leftrightarrow \exists n \in \mathbb{Z} \quad \text{s.t.} \quad z = \left(2n + \frac{1}{2}\right)\pi - i\log\left(2 \pm \sqrt{3}\right). \blacksquare$$

解答 97. 任意の $z_1, z_2 \in \mathbb{C}$ に対して (途中で $w_1 := e^{z_1}, w_2 := e^{z_2}$ とおいて)

$$\begin{aligned} \cos(z_1+z_2) &- (\cos z_1 \cos z_2 - \sin z_1 \sin z_2) \\ &= \frac{e^{i(z_1+z_2)} + e^{-i(z_1+z_2)}}{2} - \frac{e^{iz_1} + e^{-iz_1}}{2} \frac{e^{iz_2} + e^{-iz_2}}{2} - \frac{e^{iz_1} - e^{-iz_1}}{2i} \frac{e^{iz_2} - e^{-iz_2}}{2i} \\ &= \frac{1}{2} \left[w_1 w_2 + \frac{1}{w_1} \frac{1}{w_2} \right] - \frac{1}{4} \left[\left(w_1 + \frac{1}{w_1} \right) \left(w_2 + \frac{1}{w_2} \right) + \left(w_1 - \frac{1}{w_1} \right) \left(w_2 - \frac{1}{w_2} \right) \right] \\ &= \frac{1}{4w_1 w_2} \left(2w_1^2 w_2^2 - (w_1^2 + 1)(w_2^2 + 1) - (w_1^2 - 1)(w_2^2 - 1) \right) \\ &= \frac{1}{4w_1 w_2} \left(2w_1^2 w_2^2 - (w_1^2 w_2^2 + w_1^2 + w_2^1 + 1) - (w_1^2 w_2^2 - w_1^2 - w_2^2 + 1) \right) = 0 \end{aligned}$$

より $\cos(z_1+z_2)=\cos z_1\cos z_2-\sin z_1\sin z_2$. sin についても同様に出来る。 \blacksquare

解答 98.

$$\cosh z = \frac{e^z + e^{-z}}{2}, \quad \sinh z = \frac{e^z - e^{-z}}{2}, \quad \tanh z = \frac{\sinh z}{\cosh z}, \quad \coth z = \frac{\cosh z}{\sinh z} = \frac{1}{\tanh z}$$

であるから

$$\cosh(iz) = \frac{e^{iz} + e^{-iz}}{2} = \cos z,$$

$$\sinh(iz) = \frac{e^{iz} - e^{-iz}}{2} = i\frac{e^{iz} - e^{-iz}}{2i} = i\sin z,$$

$$\tanh(iz) = \frac{\sinh(iz)}{\cosh(iz)} = \frac{i\sin z}{\cos z} = i\tan z,$$

$$\coth(iz) = \frac{1}{i\tan z} = -i\cot z.$$

ゆえに

$$\cos(iz) = \cosh(i^2z) = \cosh(-z) = \cosh z,$$

$$\sin(iz) = \frac{1}{i}\sinh(i^2z) = -i\cdot\sinh(-z) = i\sinh z,$$

$$\tan(iz) = \frac{1}{i}\tanh(i^2z) = -i\cdot\tanh(-z) = i\tanh z,$$

$$\cot(iz) = \frac{1}{-i}\coth(i^2z) = i\cdot\coth(-z) = -i\coth z.\blacksquare$$

解答 99.

 $(1) \ \sinh z = rac{e^z-e^{-z}}{2}$ であるから、 $Z:=e^z$ とおくと、 $w=rac{Z-1/Z}{2}$. これから 2 次方程式 $Z^2-2wZ-1=0$ を得る。ゆえに

$$Z = w \pm \sqrt{w^2 + 1}.$$

z=0 のとき、 $Z=e^z=1, w=\sinh z=0$ であるので、w=0 の十分小さな近傍に対して Z=1 の近傍が対応する。 1 の十分近くでは $\sqrt{1}=1$ となるように $\sqrt{}$ の分枝を定めた場合は $Z=w-\sqrt{w^2+1}$ は不適で、 $Z=w+\sqrt{w^2+1}$ を採用しなければならない。(今のところ青字は読み飛ばしても良い。) ゆえに

$$Z = w + \sqrt{w^2 + 1}$$
.

これから

$$z = \log Z = \log \left(w + \sqrt{w^2 + 1} \right).$$

 $(\log は多価だから、1 つの w に複数の w が対応することが分かる。)$

(2) (上とほぼ同様で) $\sin z=\frac{e^{iz}-e^{-iz}}{2i}$ であるから、 $Z:=e^{iz}$ とおくと、 $w=\frac{Z-1/Z}{2i}$. これから 2 次方程式 $Z^2-2iwZ-1=0$ を得る。ゆえに

$$Z = iw \pm \sqrt{1 - w^2}.$$

z=0 のとき、 $Z=e^{iz}=1, w=\sin z=0$ であるので、w=0 の十分小さな近傍に対して Z=1 の近傍が対応する。 1 の十分近くでは $\sqrt{1}=1$ となるように $\sqrt{}$ の分枝を定めた場合は $Z=iw-\sqrt{1-w^2}$ は不適で、 $Z=iw+\sqrt{1-w^2}$ を採用しなければならない。(今のところ青字は読み飛ばしても良い。) ゆえに

$$Z = iw + \sqrt{1 - w^2}$$
.

これから

$$iz = \log Z = \log \left(iw + \sqrt{1 - w^2} \right).$$

ゆえに

$$z = -i\log\left(iw + \sqrt{1 - w^2}\right).$$

 $(3) \ \tan z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{2i} \cdot \frac{2}{e^{iz} + e^{-iz}} = -i \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} \ \text{であるから、} Z := e^{iz} \ \texttt{とおくと、}$

$$w = -i\frac{Z - 1/Z}{Z + 1/Z} = -i\frac{Z^2 - 1}{Z^2 + 1}.$$

これは Z^2 についての 1 次方程式で、解は $Z^2 = \frac{1+iw}{1-iw}$. これから

$$Z = \sqrt{\frac{1+iw}{1-iw}}.$$

上と同様に、w=0 の十分小さな近傍に Z=1 の近傍が対応するようにするには、 $\sqrt{1}=1$ となるように $\sqrt{}$ の分枝を定めた場合、 $Z=-\sqrt{\frac{1+iw}{1-iw}}$ は不適である。

$$iz = \text{Log } Z = \log \sqrt{\frac{1+iw}{1-iw}} = \frac{1}{2} (\log(1+iw) - \log(1-ix)).$$

ゆえに

$$z = \frac{i}{2} \left(\log(1 - iw) - \log(1 + iw) \right) . \blacksquare$$

少しもやもやするところが残るかもしれないが、現時点までに分かったことを整理してみると、

● 指数関数、三角関数、双曲線関数は、自然に複素関数に拡張できる。それらの間に成り立つ関係式などは、複素 関数でもそのまま成り立つ。 • 次のように定義する (そうするのが自然であると考えられるので)。

$$\begin{split} & \arcsin w = \log \left(w + \sqrt{w^2 + 1} \right), \\ & \arcsin w = -i \log \left(iw + \sqrt{1 - w^2} \right), \\ & \arctan w = \frac{i}{2} \left(\log (1 - iw) - \log (1 + iw) \right). \end{split}$$

- 指数関数、三角関数、双曲線関数の逆関数も複素関数に拡張できるが、多価性を持つ (のが普通であるらしい、全 部確かめたわけではないが)。
- 対数関数は既に一定のレベルで解決している。
- 逆三角関数、逆双曲線関数は、対数関数と (補助的に) $\sqrt{}$ を用いて表示できる (らしい、全部確かめたわけではないが)。
- — ということは、対数関数の多価性 (これは既にはっきりわかっている) と $\sqrt{}$ の多価性が良く分かれば、逆三 角関数と逆双曲線関数の多価性も理解できそうだ。