複素関数・同演習 第11回

~ 冪級数 (3) 収束半径 (続き), 一様収束 ~

かつらだ まさし 桂田 祐史

https://m-katsurada.sakura.ne.jp/complex2022/

2022年10月25日

目次

- 1 本日の内容・連絡事項
- ② 冪級数 (続き)
 - 収束円 (続き)収束半径の求め方の考え方
 - 収木干住の木の方の考え方
 - Cauchy-Hadamard の公式
 - ratio test
 - 例
 - 一様収束
 - 目的の説明: 項別積分, 項別微分
 - 各点収束,一様収束の定義
 - 例
- 3 参考文献

本日の内容・連絡事項

- 宿題5の提出先の準備が遅れたので (うっかりしていました)、宿題5の〆切は10月26日10:50とします。そのため、宿題5の解説は10月26日の2限に行います。
- 先週やるはずだった、宿題4の解説をします。
- 宿題6は次回(10月26日2限)に出します。
- 冪級数の3回目。まず3.2.2 (1 枚) を済ませた後、3.2.3 を飛ばして、3.2.4 の定理11.3 の証明を済ませる。それから3.3 「一様収束」に飛ぶ。

3.2.2 収束半径の求め方の考え方

冪級数の収束について、次のように考えることを勧める。

冪級数は等比級数に近いので、等比級数と比べて収束半径を求める

 $a_n(z-c)^n \sim r^n$ とみなす。|r| に相当するものがどのようにして求められるか?

③ 比を取る $(|r^{n+1}|/|r^n|=|r|)$ 。

$$|r| \sim \frac{\left|a_{n+1}(z-c)^{n+1}\right|}{|a_n(z-c)^n|} = |z-c|\left|\frac{a_{n+1}}{a_n}\right|$$

であるから、 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ が存在するならば、それが役に立ちそう。実際 $|z-c| \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$

が1より小さければ収束、1より大きければ発散である (d'Alembert, ratio test)。

n 乗根を取る (√/|r|ⁿ = |r|)。

$$|r| \sim \sqrt[n]{|a_n(z-c)^n|} = \sqrt[n]{|a_n|}|z-c|$$

であるから、 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ が存在するならば、それが役に立ちそう。実際

$$|z-c|\lim_{n\to\infty}\sqrt[n]{|a_n|}$$

が 1 より小さければ収束、1 より大きければ発散である。実は lim を lim sup とすることが出来て、究極の答えになる (Cauchy-Hadamard の公式)。

0月25日の講義では次の3.2.3を飛ばして進みます。

与えられた冪級数に対して、どのように収束半径を求めるかが問題となる。ある意味で究極の解答がある。使うのが難しいので強くは推めないが、紹介はしておく。

与えられた冪級数に対して、どのように収束半径を求めるかが問題となる。ある意味で究極の解答がある。使うのが難しいので強くは推めないが、紹介はしておく。

定理 11.1 (Cauchy-Hadamard の公式 (判定法))

ベキ級数 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径 ho は、 $\frac{1}{0}=+\infty$, $\frac{1}{+\infty}=0$ という約束の

元で

(1)
$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

ここで lim sup は**上極限**を表す (定義は次のスライド)。

与えられた冪級数に対して、どのように収束半径を求めるかが問題となる。ある意味で究極の解答がある。使うのが難しいので強くは推めないが、紹介はしておく。

定理 11.1 (Cauchy-Hadamard の公式 (判定法))

ベキ級数 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径 ho は、 $\frac{1}{0}=+\infty$, $\frac{1}{+\infty}=0$ という約束の

元で

(1)
$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

ここで lim sup は上極限を表す (定義は次のスライド)。

• 任意の数列 $\{a_n\}$ に対して、 $\limsup_{n\to\infty} \sqrt[n]{|a_n|}$ が確定するので、すべての冪級数に対して公式 (1) が適用できる。これは大きな長所である。

与えられた冪級数に対して、どのように収束半径を求めるかが問題となる。ある意味で<mark>究極の解答</mark>がある。使うのが難しいので強くは推めないが、紹介はしておく。

定理 11.1 (Cauchy-Hadamard の公式 (判定法))

ベキ級数 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径 ho は、 $\frac{1}{0}=+\infty$, $\frac{1}{+\infty}=0$ という約束の

元で

(1)
$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

ここで lim sup は上極限を表す (定義は次のスライド)。

- 任意の数列 $\{a_n\}$ に対して、 $\limsup_{n\to\infty} \sqrt[n]{|a_n|}$ が確定するので、すべての冪級数に対して公式 (1) が適用できる。これは大きな長所である。
- $\limsup_{n\to\infty} \sqrt[n]{|a_n|}$ をどうやって求めるかは問題として残る。この講義では、 $\limsup_{n\to\infty}$ 求める練習に時間をかけられないので、この定理を使わない方法を推奨することにする。

一応 \limsup (上極限) の定義を書いておく。簡単な場合は、定義から $\limsup_{n \to \infty} \sqrt[n]{|a_n|}$ が

すぐ求められるかもしれない。 (例えば
$$\limsup_{n \to \infty} \left[(-1)^n + \frac{1}{n} \right] = 1.$$
)

上極限の定義

 $\{a_n\}$ を実数列, $\lambda\in\mathbb{R}$ とする。 $\limsup_{n\to\infty}a_n=\lambda$ とは、次の2条件を満たすことをいう。

- ① $(\forall \varepsilon > 0)$ $(\exists N \in \mathbb{N})$ $(\forall n \in \mathbb{N}: n \ge N)$ $a_n < \lambda + \varepsilon$. これは十分大きい任意の n に対して $a_n < \lambda + \varepsilon$ が成り立つ、ということ。
- ② $(\forall \varepsilon > 0)$ $(\forall N \in \mathbb{N})$ $(\exists n \in \mathbb{N}: n \geq N)$ $a_n > \lambda \varepsilon$. これは $a_n > \lambda - \varepsilon$ を満たす n は無限個ある、ということ。
- $\limsup a_n = +\infty$ とは、任意の $U \in \mathbb{R}$ に対して、 $a_n > U$ を満たす n が無限 $n \to \infty$ 個存在する、ということ。
- $\limsup_{n\to\infty} a_n = -\infty$ とは、 $\lim_{n\to\infty} a_n = -\infty$ を満たす、ということ。

上極限について、詳しいことが知りたければ、例えば杉浦 [1] V.1 を見よ。

Cauchy-Hadamard の公式の簡略化バージョンを掲げておく。

系 11.2 (Cauchy-Hadamard の公式 簡略版)

ベキ級数
$$\sum_{n=0}^{\infty} a_n (z-c)^n$$
 に対して、 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ が確定 (収束または $+\infty$ に発散) するならば、収束半径 ρ は、 $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$ という約束の元で

散) するならば、収束半径
$$\rho$$
 は、 $\frac{1}{0}=+\infty$, $\frac{1}{+\infty}=0$ という約束の元で
$$\rho=\frac{1}{\lim_{n\to\infty}\sqrt[n]{|a_n|}}.$$

Cauchy-Hadamard の公式の簡略化バージョンを掲げておく。

系 11.2 (Cauchy-Hadamard の公式 簡略版)

ベキ級数
$$\sum_{n=0}^{\infty} a_n (z-c)^n$$
 に対して、 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ が確定 (収束または $+\infty$ に発

散) するならば、収束半径
$$\rho$$
 は、 $\frac{1}{0}=+\infty$, $\frac{1}{+\infty}=0$ という約束の元で
$$\rho=\frac{1}{\lim_{n\to\infty}\sqrt[n]{|a_n|}}.$$

証明.

「 $\lim_{n \to \infty} A_n$ が確定すれば $\limsup_{n \to \infty} A_n = \lim_{n \to \infty} A_n$ 」(これは簡単に示せる) が成り立つから。

今後、収束半径の議論をしているとき、つねに次のように約束しておく。

$$\frac{1}{0} = +\infty$$
, $\frac{1}{+\infty} = 0$.

次の 3.2 .4 「ratio test」は、定理 11.3 の証明以外は、前回 (10 月 18 日) の授業で解説済みである。このスライドには、読みやすさを考えて、前回説明した分も合わせて収録しておく。

多くの場合、次の定理を使って収束半径が求められる。

定理 11.3 (d'Alembert の判定法, ratio test)

$$\lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}$$
 が確定するならば、 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径は $\lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}$.

桂 田

多くの場合、次の定理を使って収束半径が求められる。

定理 11.3 (d'Alembert の判定法, ratio test)

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 が確定するならば、 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径は $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$.

証明 c=0 の場合に証明すれば良い。

桂田

多くの場合、次の定理を使って収束半径が求められる。

定理 11.3 (d'Alembert の判定法, ratio test)

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 が確定するならば、 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径は $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$.

証明 c=0 の場合に証明すれば良い。

$$ho:=\lim_{n\to\infty}rac{|a_n|}{|a_{n+1}|}$$
 とおく。 $|z|<
ho$ ならば収束し、 $|z|>
ho$ ならば発散することを示す。

多くの場合、次の定理を使って収束半径が求められる。

定理 11.3 (d'Alembert の判定法, ratio test)

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 が確定するならば、 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径は $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$.

証明 c=0 の場合に証明すれば良い。

$$ho:=\lim_{n\to\infty}rac{|a_n|}{|a_{n+1}|}$$
 とおく。 $|z|<
ho$ ならば収束し、 $|z|>
ho$ ならば発散することを示す。

$$z$$
 が $|z| < \rho$ を満たすとする。 $|z| < R < \rho$ となる R をとる。

ある
$$N \in \mathbb{N}$$
 が存在して、 $(\forall n \in \mathbb{N}: n \geq N) \left| \frac{a_n}{a_{n+1}} \right| > R$ が成り立つ。

多くの場合、次の定理を使って収束半径が求められる。

定理 11.3 (d'Alembert の判定法, ratio test)

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 が確定するならば、 $\sum_{n=0}^{\infty} a_n (z-c)^n$ の収束半径は $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$.

証明 c=0 の場合に証明すれば良い。

$$ho:=\lim_{n o\infty}rac{|a_n|}{|a_{n+1}|}$$
 とおく。 $|z|<
ho$ ならば収束し、 $|z|>
ho$ ならば発散することを示す。

z が $|z| < \rho$ を満たすとする。 $|z| < R < \rho$ となる R をとる。

ある
$$N \in \mathbb{N}$$
 が存在して、 $(\forall n \in \mathbb{N}: n \geq N) \left| \frac{a_n}{a_{n+1}} \right| > R$ が成り立つ。

この条件を満たす N を一つとる。 $m \ge 0$ とするとき

$$\left|a_{N+m}z^{N+m}\right| = \left|a_N\frac{a_{N+1}}{a_N}\cdot\frac{a_{N+2}}{a_{N+1}}\cdots\frac{a_{N+m}}{a_{N+m-1}}z^Nz^m\right| \leq \left|a_Nz^N\right|\left(\frac{|z|}{R}\right)^m.$$

多くの場合、次の定理を使って収束半径が求められる。

定理 11.3 (d'Alembert の判定法, ratio test)

$$\lim_{n\to\infty}rac{|a_n|}{|a_{n+1}|}$$
 が確定するならば、 $\sum_{n=0}^{\infty}a_n(z-c)^n$ の収束半径は $\lim_{n\to\infty}rac{|a_n|}{|a_{n+1}|}$.

証明 c=0 の場合に証明すれば良い。

$$ho:=\lim_{n o\infty}rac{|a_n|}{|a_{n+1}|}$$
 とおく。 $|z|<
ho$ ならば収束し、 $|z|>
ho$ ならば発散することを示す。

z が $|z| < \rho$ を満たすとする。 $|z| < R < \rho$ となる R をとる。

ある
$$N \in \mathbb{N}$$
 が存在して、 $(\forall n \in \mathbb{N}: n \geq N) \left| \frac{a_n}{a_{n+1}} \right| > R$ が成り立つ。

この条件を満たす N を一つとる。m > 0 とするとき

$$\left|a_{N+m}z^{N+m}\right| = \left|a_N\frac{a_{N+1}}{a_N}\cdot\frac{a_{N+2}}{a_{N+1}}\cdots\frac{a_{N+m}}{a_{N+m-1}}z^Nz^m\right| \leq \left|a_Nz^N\right|\left(\frac{|z|}{R}\right)^m.$$

言い換えると任意の n ≥ N に対して

$$|a_n z^n| \le |a_N z^N| \left(\frac{|z|}{R}\right)^{n-N}$$
.

そこで

$$b_n := \left\{ \begin{array}{ll} |a_n z^n| & (0 \le n \le N - 1) \\ |a_N z^N| \left(\frac{|z|}{R}\right)^{n - N} & (n \ge N) \end{array} \right.$$

とおくと、

そこで

$$b_n := \begin{cases} |a_n z^n| & (0 \le n \le N - 1) \\ |a_N z^N| \left(\frac{|z|}{R}\right)^{n - N} & (n \ge N) \end{cases}$$

とおくと、任意の $n \in \mathbb{N}$ に対して、 $|a_n z^n| \leq b_n$,

$$\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{N-1} |a_n z^n| + \frac{|a_N z^N|}{1 - |z|/R}$$
 (収束).

そこで

$$b_n := \begin{cases} |a_n z^n| & (0 \le n \le N - 1) \\ |a_N z^N| \left(\frac{|z|}{R}\right)^{n - N} & (n \ge N) \end{cases}$$

とおくと、任意の $n \in \mathbb{N}$ に対して、 $|a_n z^n| \leq b_n$,

$$\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{N-1} |a_n z^n| + \frac{|a_N z^N|}{1 - |z|/R}$$
 (収束).

優級数の定理 (定理 9.2) より $\sum_{n=0}^{\infty} a_n z^n$ は収束する。

そこで

$$b_n := \begin{cases} |a_n z^n| & (0 \le n \le N - 1) \\ |a_N z^N| \left(\frac{|z|}{R}\right)^{n - N} & (n \ge N) \end{cases}$$

とおくと、任意の $n \in \mathbb{N}$ に対して、 $|a_n z^n| < b_n$

$$\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{N-1} |a_n z^n| + \frac{|a_N z^N|}{1 - |z|/R} \quad (収束).$$

優級数の定理 (定理 9.2) より $\sum_{n=0}^{\infty} a_n z^n$ は収束する。

一方、
$$|z| > \rho$$
 とする。 $|z| > R > \rho$ となる R をとる。
ある $N \in \mathbb{N}$ が存在して $(\forall n \in \mathbb{N}: n \geq N) \left| \frac{a_n}{a_{n+1}} \right| < R$ が成り立つ。
上と同様にして、任意の $n \geq N$ に対して

上と同様にして、任意の
$$n \ge N$$
 に対して

$$|a_n z^n| \ge |a_N z^N| \left(\frac{|z|}{R}\right)^{n-N}.$$

そこで

$$b_n := \begin{cases} |a_n z^n| & (0 \le n \le N - 1) \\ |a_N z^N| \left(\frac{|z|}{R}\right)^{n - N} & (n \ge N) \end{cases}$$

とおくと、任意の $n \in \mathbb{N}$ に対して、 $|a_n z^n| \leq b_n$,

$$\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{N-1} |a_n z^n| + \frac{|a_N z^N|}{1 - |z|/R} \quad (収束).$$

優級数の定理 (定理 9.2) より $\sum_{n=0}^{\infty} a_n z^n$ は収束する。

一方、 $|z| > \rho$ とする。 $|z| > R > \rho$ となる R をとる。 ある $N \in \mathbb{N}$ が存在して $(\forall n \in \mathbb{N}: n \geq N) \left| \frac{a_n}{a_{n+1}} \right| < R$ が成り立つ。

上と同様にして、任意の $n \ge N$ に対して

$$|a_nz^n| \ge |a_Nz^N| \left(\frac{|z|}{R}\right)^{n-N}.$$

|z|/R>1 であるから、 a_nz^n は 0 に収束しない。ゆえに $\sum_{n=0}^\infty a_nz^n$ は発散する。

そこで

$$b_n := \begin{cases} |a_n z^n| & (0 \le n \le N - 1) \\ |a_N z^N| \left(\frac{|z|}{R}\right)^{n - N} & (n \ge N) \end{cases}$$

とおくと、任意の $n \in \mathbb{N}$ に対して、 $|a_n z^n| \leq b_n$,

$$\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{N-1} |a_n z^n| + \frac{|a_N z^N|}{1 - |z|/R}$$
 (収束).

優級数の定理 (定理 9.2) より $\sum_{n=0}^{\infty} a_n z^n$ は収束する。

一方、 $|z| > \rho$ とする。 $|z| > R > \rho$ となる R をとる。 ある $N \in \mathbb{N}$ が存在して $(\forall n \in \mathbb{N}: n \ge N) \left| \frac{a_n}{a_{n+1}} \right| < R$ が成り立つ。

上と同様にして、任意の $n \ge N$ に対して

$$|a_n z^n| \ge |a_N z^N| \left(\frac{|z|}{R}\right)^{n-N}$$
.

|z|/R>1 であるから、 a_nz^n は 0 に収束しない。ゆえに $\sum_{n=0}^\infty a_nz^n$ は発散する。以上から、 ρ は収束半径である。

次の 3.2 5 「例」は、前回 (10 月 18 日) の授業で解説済みであるので、 今回は (もちろん) 説明しないが、話の順番としてはこの後に続くべきも のなので、スライドには再録しておく。

収束半径を求める例をいくつか示す。

冪級数の中心を c, 係数を a_n , 収束半径を ρ と表すことにする。

例 11.4 (最も基本的で重要な冪級数 — 等比級数)

 $\sum_{n=0}^{\infty} z^{n}. \ \rho = 1. \ 収束円は \ D(0;1).$

n=0

これは色々なやり方で証明できる。

収束半径を求める例をいくつか示す。

冪級数の中心を c, 係数を a_n , 収束半径を ho と表すことにする。

例 11.4 (最も基本的で重要な冪級数 — 等比級数)

 $\sum_{n=0}^{\infty} z^n$. $\rho = 1$. 収束円は D(0;1). これは色々なやり方で証明できる。

• (既出) 公比 z の等比級数なので、収束 \Leftrightarrow |z| < 1. 特に |z| < 1 ならば収束、|z| > 1 ならば発散する。ゆえに収束半径は 1 である。

収束半径を求める例をいくつか示す。

冪級数の中心を c, 係数を a_n , 収束半径を ho と表すことにする。

例 11.4 (最も基本的で重要な冪級数 — 等比級数)

 $\sum_{n=0}^{\infty} z^n$. $\rho=1$. 収束円は D(0;1). これは色々なやり方で証明できる。

• (既出) 公比 z の等比級数なので、収束 \Leftrightarrow |z| < 1. 特に |z| < 1 ならば収束、|z| > 1 ならば発散する。ゆえに収束半径は 1 である。

c=0, $a_n=1$ である。

収束半径を求める例をいくつか示す。

冪級数の中心を c, 係数を a_n , 収束半径を ho と表すことにする。

例 11.4 (最も基本的で重要な冪級数 — 等比級数)

$$\sum_{n=0}^{\infty} z^n$$
. $\rho = 1$. 収束円は $D(0; 1)$. これは色々なやり方で証明できる。

• (既出) 公比 z の等比級数なので、収束 \Leftrightarrow |z| < 1. 特に |z| < 1 ならば収束、|z| > 1 ならば発散する。ゆえに収束半径は 1 である。

$$c=0$$
, $a_n=1$ である。

• $\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} 1 = 1$ であるから、Cauchy-Hadamard の判定法により $\rho = \frac{1}{1} = 1$.

収束半径を求める例をいくつか示す。

冪級数の中心を c, 係数を a_n , 収束半径を ρ と表すことにする。

例 11.4 (最も基本的で重要な冪級数 — 等比級数)

$$\sum_{n=0}^{\infty} z^n$$
. $\rho = 1$. 収束円は $D(0; 1)$. これは色々なやり方で証明できる。

• (既出) 公比 z の等比級数なので、収束 \Leftrightarrow |z| < 1. 特に |z| < 1 ならば収束、|z| > 1 ならば発散する。ゆえに収束半径は 1 である。

$$c=0$$
, $a_n=1$ である。

- $\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} 1 = 1$ であるから、Cauchy-Hadamard の判定法により $\rho = \frac{1}{1} = 1$.
- $\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}1=1$ であるから、ratio test により $\rho=1$.

上の例を少しだけ一般化してみる。

例 11.5 (等比級数)

$$c_0 \in \mathbb{C}, R > 0$$
 とするとき、 $\sum_{n=0}^{\infty} \left(\frac{z-c_0}{R}\right)^n$ の収束半径を調べよう。

上の例を少しだけ一般化してみる。

例 11.5 (等比級数)

$$c_0 \in \mathbb{C}$$
, $R > 0$ とするとき、 $\sum_{n=0}^{\infty} \left(\frac{z-c_0}{R}\right)^n$ の収束半径を調べよう。 $c = c_0$, $a_n = \frac{1}{R^n}$ である。

上の例を少しだけ一般化してみる。

例 11.5 (等比級数)

$$c_0 \in \mathbb{C}$$
, $R > 0$ とするとき、 $\sum_{n=0}^{\infty} \left(\frac{z - c_0}{R}\right)^n$ の収束半径を調べよう。 $c = c_0$, $a_n = \frac{1}{R^n}$ である。

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}\frac{R^{n+1}}{R^n}=R.$$

ゆえに ratio test より $\rho = R$. 収束円は $D(c_0; R)$.

上の例を少しだけ一般化してみる。

例 11.5 (等比級数)

$$c_0 \in \mathbb{C}$$
, $R > 0$ とするとき、 $\sum_{n=0}^{\infty} \left(\frac{z - c_0}{R}\right)^n$ の収束半径を調べよう。 $c = c_0$, $a_n = \frac{1}{R^n}$ である。

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}\frac{R^{n+1}}{R^n}=R.$$

ゆえに ratio test より $\rho = R$. 収束円は $D(c_0; R)$.

上の例を少しだけ一般化してみる。

例 11.5 (等比級数)

$$c_0 \in \mathbb{C}$$
, $R > 0$ とするとき、 $\sum_{n=0}^{\infty} \left(\frac{z - c_0}{R}\right)^n$ の収束半径を調べよう。 $c = c_0$, $a_n = \frac{1}{R^n}$ である。

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}\frac{R^{n+1}}{R^n}=R.$$

ゆえに ratio test より $\rho = R$. 収束円は $D(c_0; R)$.

(別解) これは公比が
$$\frac{z-c_0}{R}$$
 の等比級数であるから、 収束 \Leftrightarrow $\left|\frac{z-c_0}{R}\right| < 1 \Leftrightarrow |z-c_0| < R$.

ゆえに $(|z-c_0| < R$ で収束、 $|z-c_0| > R$ で発散するので) 収束半径は R. 収束円は $D(c_0; R)$.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} z^n.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} z^n.$$

このとき
$$c=0$$
, $a_n=\frac{1}{n^2}$ $(n\in\mathbb{N})$ である。

例 11.6

$$\sum_{n=1}^{\infty} \frac{1}{n^2} z^n. \qquad \text{このとぎ } c = 0, \ a_n = \frac{1}{n^2} \ (n \in \mathbb{N}) \ \text{である}.$$

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 = (1+0)^2 = 1.$$

ゆえに ratio test より $\rho=1$. 収束円は D(0;1).

例 11.6

$$\sum_{n=1}^{\infty} \frac{1}{n^2} z^n.$$
 このとぎ $c = 0$, $a_n = \frac{1}{n^2} (n \in \mathbb{N})$ である。
$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 = (1+0)^2 = 1.$$

ゆえに ratio test より $\rho=1$. 収束円は D(0;1).

$$\sum_{1}^{\infty} n^2 z^n.$$

例 11.6

$$\sum_{n=1}^{\infty} \frac{1}{n^2} z^n.$$
 このとぎ $c = 0$, $a_n = \frac{1}{n^2} (n \in \mathbb{N})$ である。
$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 = (1+0)^2 = 1.$$

ゆえに ratio test より $\rho = 1$. 収束円は D(0;1).

$$\sum_{n=0}^{\infty} n^2 z^n$$
. このとき $c=0$, $a_n=n^2$ $(n\in\mathbb{N})$ である。

例 11.6

$$\sum_{n=1}^{\infty} \frac{1}{n^2} z^n.$$
 このとぎ $c = 0$, $a_n = \frac{1}{n^2} (n \in \mathbb{N})$ である。
$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 = (1+0)^2 = 1.$$

ゆえに ratio test より $\rho = 1$. 収束円は D(0;1).

例 11.7

$$\sum_{n=1}^{\infty} n^2 z^n. \qquad \text{このとぎ } c = 0, \ a_n = n^2 \ (n \in \mathbb{N}) \text{ である}_{\circ}$$

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \lim_{n \to \infty} \frac{1}{(1+1/n)^2} = \frac{1}{(1+0)^2} = 1.$$

ゆえに ratio test より $\rho=1$. 収束円は D(0;1).

$$\sum_{n=1}^{\infty} \frac{1}{n!} z^n.$$

$$\sum_{n=1}^{\infty} \frac{1}{n!} z^n.$$

このとき
$$c=0$$
, $a_n=\frac{1}{n!}$ $(n\in\mathbb{N})$ である。

例 11.8

$$\sum_{n=1}^{\infty} \frac{1}{n!} z^n$$
. このとぎ $c=0$, $a_n=\frac{1}{n!}$ $(n\in\mathbb{N})$ である。

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}\frac{(n+1)!}{n!}=\lim_{n\to\infty}(n+1)=+\infty.$$

ゆえに ratio test より $\rho = +\infty$. 収束円は \mathbb{C} .

例 11.8

$$\sum_{n=1}^{\infty} \frac{1}{n!} z^n$$
. このとぎ $c=0$, $a_n=\frac{1}{n!}$ $(n\in\mathbb{N})$ である。

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}\frac{(n+1)!}{n!}=\lim_{n\to\infty}(n+1)=+\infty.$$

ゆえに ratio test より $\rho = +\infty$. 収束円は \mathbb{C} .

$$\sum_{n=1}^{\infty} n! z^n.$$

例 11.8

$$\sum_{n=1}^{\infty} \frac{1}{n!} z^n$$
. このとぎ $c=0$, $a_n=\frac{1}{n!}$ $(n\in\mathbb{N})$ である。

$$\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=\lim_{n\to\infty}\frac{(n+1)!}{n!}=\lim_{n\to\infty}(n+1)=+\infty.$$

ゆえに ratio test より $\rho = +\infty$. 収束円は \mathbb{C} .

例 11.9

$$\sum^{\infty} n! z^n.$$

$$\sum_{n=0}^{\infty} n! z^n$$
. $z^n \ge 0$, $z^n = 0$, $z^n = 0$. $z^n \le 0$. $z^n \le 0$.

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

ゆえに ratio test より $\rho = 0$. 収束円は \emptyset .

(簡単なまとめ)

- $\sum_{n=0}^{\infty} a_n (z-c)^n$, $\sum_{n=0}^{\infty} a_n z^n$ の収束半径は同じ。収束円の中心が c, 0 という違いがある。
- k を定数とするとき、 $\sum_{n=0}^{\infty} n^k z^n$ の収束半径は、k が何であっても 1.
- $c \neq 0$ とするとき、 $\sum_{n=0}^{\infty} c^n z^n$ の収束半径は $\frac{1}{|c|}$.
- $\sum_{n=0}^{\infty} n! z^n$, $\sum_{n=0}^{\infty} \frac{1}{n!} z^n$ の収束半径はそれぞれ $0, +\infty$.

$$\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{n} (z-1)^n.$$

$$\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{n} (z-1)^n.$$

このとぎ
$$c=1$$
, $a_n=\frac{(-2)^{n-1}}{n}$ $(n \in \mathbb{N})$, $a_0=0$ である。

例 11.10

$$\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{n} (z-1)^n.$$

このとき
$$c=1$$
, $a_n=\frac{(-2)^{n-1}}{n}$ $(n\in\mathbb{N})$, $a_0=0$ である。

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{\left| (-2)^{n-1}/n \right|}{\left| (-2)^n/(n+1) \right|} = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2}.$$

ゆえに ratio test より $\rho = \frac{1}{2}$. 収束円は D(1; 1/2).

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
. (実は $\sin z$ の Taylor 展開だがそのことは使わない)。

例 11.11

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
. (実は $\sin z$ の Taylor 展開だがそのことは使わない)。

$$c=0, \quad a_n=\left\{ egin{array}{ll} \dfrac{(-1)^k}{(2k+1)!} & (n \ \mbox{k 奇数}, k \ \mbox{を} \ n=2k+1 \ \mbox{で定めて}) \\ 0 & (n \ \mbox{k 偶数}). \end{array}
ight.$$

 $a_n = 0$ となる n が無限個あるので、d'Alembert の公式は直接は使えない。

例 11.11

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
. (実は $\sin z$ の Taylor 展開だがそのことは使わない)。

$$c=0, \quad a_n=\left\{ egin{array}{ll} \dfrac{(-1)^k}{(2k+1)!} & (n \ \mbox{k 奇数, k on}=2k+1 \ \mbox{で定めて)} \\ 0 & (n \ \mbox{k 偶数)}. \end{array}
ight.$$

 $a_n = 0$ となる n が無限個あるので、d'Alembert の公式は直接は使えない。 $\zeta := z^2$ とおくと a

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1} = z \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \zeta^k.$$

*共通因数zをくくり出したわけだが、「一般に級数の一般項に(0以外の)定数をかけることで収束発散は変わらない」ことに注意すると、収束する場合も、収束しない場合も正しいことが分かる。

桂 田

例 11.11 (つづき)

そこで

$$(\star) \qquad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \zeta^k$$

の収束発散が問題となる。

$$b_k := \frac{(-1)^k}{(2k+1)!}$$

とおくと $\lim_{k\to\infty}\left|\frac{b_k}{b_{k+1}}\right|=+\infty$ であることは簡単に分かる。ゆえに (\star) の収束半径は $+\infty$. ゆえに (\star) は任意の $\zeta\in\mathbb{C}$ に対して収束する。

例 11.11 (つづき)

そこで

$$(\star) \qquad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \zeta^k$$

の収束発散が問題となる。

$$b_k := \frac{(-1)^k}{(2k+1)!}$$

とおくと $\lim_{k o \infty} \left| rac{b_k}{b_{k+1}}
ight| = +\infty$ であることは簡単に分かる。ゆえに (\star) の収束半

径は $+\infty$. ゆえに (\star) は任意の $\zeta \in \mathbb{C}$ に対して収束する。

ゆえに元の級数は、任意の $z \in \mathbb{C}$ に対して収束する。ゆえに $\rho = +\infty$.

例 11.11 (つづき 別解)

Cauchy-Hadamard の公式の簡略版 (系 11.2) を使って示すことも出来る。

$$0 \le \sqrt[n]{|a_n|} \le \frac{1}{\sqrt[n]{n!}}$$
 (n が奇数のとき等号成立)

という評価が成り立ち、

例 11.11 (つづき 別解)

Cauchy-Hadamard の公式の簡略版 (系 11.2) を使って示すことも出来る。

$$0 \le \sqrt[n]{|a_n|} \le \frac{1}{\sqrt[n]{n!}}$$
 (n が奇数のとき等号成立)

という評価が成り立ち、実は

(2)
$$\lim_{n\to\infty} \sqrt[n]{n!} = +\infty \quad (次のスライドで証明)$$

であるから、

例 11.11 (つづき 別解)

Cauchy-Hadamard の公式の簡略版 (系 11.2) を使って示すことも出来る。

$$0 \leq \sqrt[n]{|a_n|} \leq rac{1}{\sqrt[n]{n!}}$$
 (n が奇数のとき等号成立)

という評価が成り立ち、実は

(2)
$$\lim_{n\to\infty} \sqrt[n]{n!} = +\infty \quad (次のスライドで証明)$$

であるから、はさみうちの原理により $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0$.

例 11.11 (つづき 別解)

Cauchy-Hadamard の公式の簡略版 (系 11.2) を使って示すことも出来る。

$$0 \le \sqrt[n]{|a_n|} \le \frac{1}{\sqrt[n]{n!}}$$
 (n が奇数のとき等号成立)

という評価が成り立ち、実は

(2)
$$\lim_{n\to\infty} \sqrt[n]{n!} = +\infty \quad (次のスライドで証明)$$

であるから、はさみうちの原理により $\lim_{n\to\infty} \sqrt[n]{|a_n|}=0$. ゆえに系 11.2 の公式から、 $\rho=\frac{1}{0}=+\infty$ である。

例 11.12 (ratio test の使えない例)

$$\sum_{k=0}^{\infty} z^{k^2}$$

例 11.12 (ratio test の使えない例)

$$\sum_{k=0}^{\infty} z^{k^2} = z^0 + z^1 + z^4 + z^9 + z^{16} + \cdots$$
 の収束半径を調べよう。

例 11.12 (ratio test の使えない例)

$$\sum_{k=0}^{\infty} z^{k^2} = z^0 + z^1 + z^4 + z^9 + z^{16} + \cdots \text{ oux}$$
 の収束半径を調べよう。
$$c := 0, \quad a_n := \left\{ \begin{array}{ll} 1 & ((\exists k \in \mathbb{N} \cup \{0\}) \ n = k^2 \text{ であるとき}) \\ 0 & (そうでないとき) \end{array} \right.$$

とおくと、
$$\sum_{n=0}^{\infty} z^{k^2} = \sum_{n=0}^{\infty} a_n (z-c)^n$$
 である。冪級数である。ratio test は使えない。

桂 田

例 11.12 (ratio test の使えない例)

$$\sum_{k=0}^{\infty} z^{k^2} = z^0 + z^1 + z^4 + z^9 + z^{16} + \cdots \quad \text{の収束半径を調べよう。}$$

$$c := 0, \quad a_n := \left\{ \begin{array}{ll} 1 & \left(\left(\exists k \in \mathbb{N} \cup \{0\} \right) \; n = k^2 \; \text{であるとき} \right) \\ 0 & \left(\mathcal{E} \text{うでないとき} \right) \end{array} \right.$$

とおくと、
$$\sum_{k=0}^{\infty} z^{k^2} = \sum_{n=0}^{\infty} a_n (z-c)^n$$
 である。冪級数である。ratio test は使えない。

$$|z|<1$$
 のとき、 $|a_n(z-c)^n|\leq |z|^n$ であり、 $\sum_{i=1}^\infty |z|^n$ は収束するから、優級数の定理

により、
$$\sum_{n=0}^{\infty} a_n(z-c)^n$$
 も収束する。

ratio test の使えない例 3.2.5 例

例 11.12 (ratio test の使えない例)

$$\sum_{k=0}^{\infty} z^{k^2} = z^0 + z^1 + z^4 + z^9 + z^{16} + \cdots \text{ on }$$
 の収束半径を調べよう。
$$c := 0, \quad a_n := \left\{ \begin{array}{l} 1 & \left(\left(\exists k \in \mathbb{N} \cup \{0\} \right) n = k^2 \text{ であるとき} \right) \\ 0 & \left(\mathcal{E} \text{うでないとき} \right) \end{array} \right.$$

とおくと、
$$\sum_{k=0}^{\infty} z^{k^2} = \sum_{n=0}^{\infty} a_n (z-c)^n$$
 である。冪級数である。ratio test は使えない。

$$|z|<1$$
 のとき、 $|a_n(z-c)^n|\leq |z|^n$ であり、 $\sum_{n=0}^\infty |z|^n$ は収束するから、優級数の定理

により、
$$\sum_{n=0}^{\infty} a_n (z-c)^n$$
 も収束する。

により、
$$\sum_{n=0}^{\infty}a_n(z-c)^n$$
 も収束する。
一方、 $|z|>1$ のとき、 $\lim_{\substack{n\to\infty\\\infty}}a_n(z-c)^n=0$ は成り立たないので $(::n)$ が平方数のと

き
$$|a_n(z-c)^n|=|z|^n>1$$
)、 $\sum_{n=0}^\infty a_n(z-c)^n$ は発散する。ゆえに収束半径は 1.

例 11.12 (ratio test の使えない例)

$$\sum_{k=0}^{\infty} z^{k^2} = z^0 + z^1 + z^4 + z^9 + z^{16} + \cdots \text{ oux}$$
 の収束半径を調べよう。
$$c := 0, \quad a_n := \left\{ \begin{array}{l} 1 & ((\exists k \in \mathbb{N} \cup \{0\}) \ n = k^2 \text{ であるとき}) \\ 0 & (そうでないとき) \end{array} \right.$$

とおくと、
$$\sum_{k=0}^{\infty} z^{k^2} = \sum_{r=0}^{\infty} a_r (z-c)^r$$
 である。冪級数である。ratio test は使えない。

$$|z|<1$$
 のとき、 $|a_n(z-c)^n|\leq |z|^n$ であり、 $\sum_{i=1}^\infty |z|^n$ は収束するから、優級数の定理

により、
$$\sum_{n=0}^{\infty} a_n(z-c)^n$$
 も収束する。

$$\overline{-n=0}$$
 一方、 $|z|>1$ のとき、 $\lim_{n o\infty}a_n(z-c)^n=0$ は成り立たないので $(\cdot\cdot\cdot n)$ が平方数のと

き
$$|a_n(z-c)^n|=|z|^n>1$$
)、 $\sum_{r=0}^{\infty}a_n(z-c)^r$ は発散する。ゆえに収束半径は 1.

別解 上極限の定義から $\limsup_{n o \infty} \sqrt[n]{|a_n|} = 1$.ゆえに Cauchy-Hadamard の公式より、収束半径は 1/1 = 1.

簡単のため、まず \mathbb{R} の区間 [a,b] 上で定義された関数列 $\{f_n\}_{n\in\mathbb{N}}$ (つまり、任意の $n\in\mathbb{N}$ に対して、 $f_n\colon [a,b]\to\mathbb{R}$) について述べる。

簡単のため、まず $\mathbb R$ の区間 [a,b] 上で定義された関数列 $\{f_n\}_{n\in\mathbb N}$ (つまり、任意の $n\in\mathbb N$ に対して、 $f_n\colon [a,b]\to\mathbb R$) について述べる。

$$\int_{a}^{b} \lim_{n \to \infty} f_{n}(x) \ dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) \ dx$$

が成り立つとき、**項別積分可能**であるという。(つまり lim と積分の順序交換)

簡単のため、まず $\mathbb R$ の区間 [a,b] 上で定義された関数列 $\{f_n\}_{n\in\mathbb N}$ (つまり、任意の $n\in\mathbb N$ に対して、 $f_n\colon [a,b]\to\mathbb R$) について述べる。

$$\int_{a}^{b} \lim_{n \to \infty} f_{n}(x) \ dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) \ dx$$

が成り立つとき、項別積分可能であるという。(つまり lim と積分の順序交換)

注
$$f_n = \sum_{k=1}^n a_k$$
 のような級数の場合は $\int_a^b \sum_{n=1}^\infty a_n(x) dx = \sum_{n=1}^\infty \int_a^b a_n(x) dx$.

簡単のため、まず $\mathbb R$ の区間 [a,b] 上で定義された関数列 $\{f_n\}_{n\in\mathbb N}$ (つまり、任意の $n\in\mathbb N$ に対して、 $f_n\colon [a,b]\to\mathbb R$) について述べる。

$$\int_{a}^{b} \lim_{n \to \infty} f_{n}(x) \ dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) \ dx$$

が成り立つとき、項別積分可能であるという。(つまり lim と積分の順序交換)

注
$$f_n = \sum_{k=1}^n a_k$$
 のような級数の場合は $\int_a^b \sum_{n=1}^\infty a_n(x) dx = \sum_{n=1}^\infty \int_a^b a_n(x) dx$.

一方

$$\frac{d}{dx}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\frac{d}{dx}f_n(x)$$

が成り立つとき、**項別微分可能**という。(つまり lim と微分の順序交換)

簡単のため、まず $\mathbb R$ の区間 [a,b] 上で定義された関数列 $\{f_n\}_{n\in\mathbb N}$ (つまり、任意の $n\in\mathbb N$ に対して、 $f_n\colon [a,b]\to\mathbb R$) について述べる。

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) \ dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \ dx$$

が成り立つとき、**項別積分可能**であるという。(つまり lim と積分の順序交換)

注
$$f_n = \sum_{k=1}^n a_k$$
 のような級数の場合は $\int_a^b \sum_{n=1}^\infty a_n(x) \ dx = \sum_{n=1}^\infty \int_a^b a_n(x) \ dx$.

一方

$$\frac{d}{dx}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\frac{d}{dx}f_n(x)$$

が成り立つとき、**項別微分可能**という。(つまり lim と微分の順序交換)

注 級数の場合は
$$\left(\sum_{n=1}^{\infty} a_n(x)\right)' = \sum_{n=1}^{\infty} a'_n(x).$$

冪級数の微分・積分を扱うのに、単なる各点収束では不十分。**一様収束が便利**。

定義 11.13 (各点収束, 一様収束)

 Ω は空でない集合、 $\{f_n\}_{n\in\mathbb{N}}$ は各 n に対して $f_n:\Omega\to\mathbb{C}, f:\Omega\to\mathbb{C}$ とする。

定義 11.13 (各点収束, 一様収束)

 Ω は空でない集合、 $\{f_n\}_{n\in\mathbb{N}}$ は各 n に対して $f_n:\Omega\to\mathbb{C}$, $f:\Omega\to\mathbb{C}$ とする。

④ $\{f_n\}_{n\in\mathbb{N}}$ が f に Ω で $(\Omega$ 上) **各点収束** (単純収束) するとは、

$$(\forall z_0 \in \Omega)$$
 $\lim_{n \to \infty} f_n(z_0) = f(z_0)$

が成り立つことをいう。

桂田 祐史 htt

定義 11.13 (各点収束, 一様収束)

 Ω は空でない集合、 $\{f_n\}_{n\in\mathbb{N}}$ は各 n に対して $f_n:\Omega\to\mathbb{C}$, $f:\Omega\to\mathbb{C}$ とする。

④ $\{f_n\}_{n\in\mathbb{N}}$ が f に Ω で $(\Omega \perp)$ **各点収束** (単純収束) するとは、

$$(\forall z_0 \in \Omega)$$
 $\lim_{n \to \infty} f_n(z_0) = f(z_0)$

が成り立つことをいう。

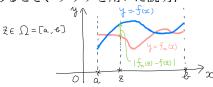
② $\{f_n\}_{n\in\mathbb{N}}$ が f に Ω で $(\Omega \perp)$ 一様収束するとは、

$$\lim_{n\to\infty}\sup_{z\in\Omega}|f_n(z)-f(z)|=0$$

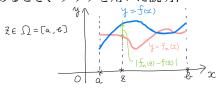
が成り立つことをいう。

桂田 祐史 htt

(Ω が ℝ の区間であるとき、グラフを用いた説明)



(Ω が ℝ の区間であるとき、グラフを用いた説明)



 $\sup_{z \in \Omega} |f_n(z) - f(z)|$ (赤線で描き込んでみよう) は、 f_n と f の距離のようなもg(z) の、それが g(z) に収束するということで、一様収束は自然な概念である。

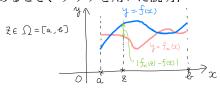
• 一般に「 $\{f_n\}_{n\in\mathbb{N}}$ が f に一様収束するならば、 $\{f_n\}_{n\in\mathbb{N}}$ は f に各点収束する」が成り立つ。実際、任意の $z_0\in\Omega$ に対して

$$|f_n(z_0)-f(z_0)| \leq \sup_{z\in\Omega} |f_n(z)-f(z)| \to 0 \quad (n\to\infty)$$

であるから、 $\lim_{n\to\infty} f_n(z_0) = f(z_0)$ が成り立つ。

(注意 極限が共通であるので、 $\{f_n\}_{n\in\mathbb{N}}$ が一様収束するか調べるには、各点収束の 極限 f を求めて、 $\{f_n\}_{n\in\mathbb{N}}$ が f に一様収束するかを調べれば良い。)

(Ω が ℝ の区間であるとき、グラフを用いた説明)



 $\sup_{z \in \Omega} |f_n(z) - f(z)|$ (赤線で描き込んでみよう) は、 f_n と f の距離のようなもg(z) の、それが g(z) に収束するということで、一様収束は自然な概念である。

• 一般に「 $\{f_n\}_{n\in\mathbb{N}}$ が f に一様収束するならば、 $\{f_n\}_{n\in\mathbb{N}}$ は f に各点収束する」が成り立つ。実際、任意の $z_0\in\Omega$ に対して

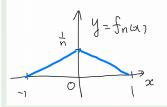
$$|f_n(z_0)-f(z_0)| \leq \sup_{z\in\Omega} |f_n(z)-f(z)| \to 0 \quad (n\to\infty)$$

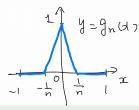
であるから、 $\lim_{n\to\infty} f_n(z_0) = f(z_0)$ が成り立つ。

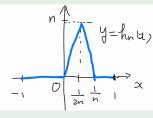
(注意 極限が共通であるので、 $\{f_n\}_{n\in\mathbb{N}}$ が一様収束するか調べるには、各点収束の極限 f を求めて、 $\{f_n\}_{n\in\mathbb{N}}$ が f に一様収束するかを調べれば良い。) しかし、逆「各点収束するならば一様収束する」は一般には成り立たない。

例 11.13 (各点収束と一様収束、極限の連続性、項別積分)

[-1,1] で定義された関数列 $\{f_n\}_{n\in\mathbb{N}}$, $\{g_n\}_{n\in\mathbb{N}}$, $\{h_n\}_{n\in\mathbb{N}}$ を次のように定める。







例 11.13 (各点収束と一様収束、極限の連続性、項別積分)

[-1,1] で定義された関数列 $\{f_n\}_{n\in\mathbb{N}}$, $\{g_n\}_{n\in\mathbb{N}}$, $\{h_n\}_{n\in\mathbb{N}}$ を次のように定める。

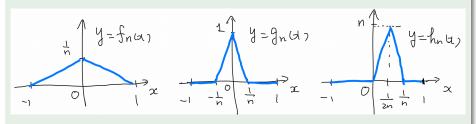


いずれも各点収束する。実際、任意の $x \in [-1,1]$ に対して

$$\lim_{n \to \infty} f_n(x) = f(x) := 0, \ \lim_{n \to \infty} g_n(x) = g(x) := \left\{ \begin{array}{ll} 1 & (x = 0) \\ 0 & (x \neq 0), \end{array} \right. \lim_{n \to \infty} h_n(x) = h(x) := 0.$$

例 11.13 (各点収束と一様収束、極限の連続性、項別積分)

[-1,1] で定義された関数列 $\{f_n\}_{n\in\mathbb{N}}$, $\{g_n\}_{n\in\mathbb{N}}$, $\{h_n\}_{n\in\mathbb{N}}$ を次のように定める。



いずれも各点収束する。実際、任意の $x \in [-1,1]$ に対して

$$\lim_{n \to \infty} f_n(x) = f(x) := 0, \ \lim_{n \to \infty} g_n(x) = g(x) := \begin{cases} 1 & (x = 0) \\ 0 & (x \neq 0), \end{cases} \quad \lim_{n \to \infty} h_n(x) = h(x) := 0.$$

 $\{::\{h_n\}_{n\in\mathbb{N}}$ について証明しよう。 $-1\leq x\leq 0$ であれば、任意の n に対して $h_n(x)=0$. $0< x\leq 1$ であれば、十分大きな n に対して $\frac{1}{n}< x$ であるから $h_n(x)=0$. ゆえに $\lim_{n\to\infty}h_n(x)=0$. この真似をして $\lim_{n\to\infty}g_n(x)=g(x)$ が示せる。)

例 11.13 (各点収束と一様収束、極限の連続性、項別積分 続き)

一様収束するか

$$\sup_{x \in [-1,1]} |f_n(x) - f(x)| = \frac{1}{n}, \quad \sup_{x \in [-1,1]} |g_n(x) - g(x)| = 1, \quad \sup_{x \in [-1,1]} |h_n(x) - h(x)| = n.$$

 $(::x \neq 0$ のとき、 $|g_n(x) - g(x)| = g_n(x)$. ここで $x \to 0$ とすると 1 に収束することに注意する。)

ゆえに $\{f_n\}_{n\in\mathbb{N}}$ は一様収束するが、 $\{g_n\}_{n\in\mathbb{N}}$ と $\{h_n\}_{n\in\mathbb{N}}$ は一様収束しない。

項別積分可能であるか

$$\int_{-1}^{1} f_n(x) dx = \frac{1}{n} \to 0 = \int_{-1}^{1} f(x) dx, \quad \int_{-1}^{1} g_n(x) dx = \frac{1}{n} \to 0 = \int_{-1}^{1} g(x) dx,$$
$$\int_{-1}^{1} h_n(x) dx = \frac{1}{2} \neq 0 = \int_{-1}^{1} h(x) dx.$$

ゆえに $\{f_n\}_{n\in\mathbb{N}}, \{g_n\}_{n\in\mathbb{N}}$ は項別積分可能であるが、 $\{h_n\}_{n\in\mathbb{N}}$ は項別積分可能でない。

極限は連続か $\{f_n\}_{n\in\mathbb{N}}$ と $\{h_n\}_{n\in\mathbb{N}}$ の極限関数 f, h は連続であるが、 $\{g_n\}_{n\in\mathbb{N}}$ の極限関数 g は連続ではない。

例 11.13 (各点収束と一様収束、極限の連続性、項別積分 続き)

表にまとめると

	収束の種類	項別積分可能か	極限関数は連続か
$\{f_n\}_{n\in\mathbb{N}}$	一様収束	0	0
$\{g_n\}_{n\in\mathbb{N}}$	各点収束のみ	×	0
$\{h_n\}_{n\in\mathbb{N}}$	各点収束のみ	0	×

実は、一様収束していれば、項別積分可能であり、かつ極限関数の連続性も成り立つ (後で証明する)。

各点収束だけでは、項別積分可能性や極限関数の連続性は成り立たない (上の例が反例になっている)。

参考文献

[1] 杉浦光夫:解析入門 I, 東京大学出版会 (1980), 詳しい (しばしば辞書的といわれる)。 丸善 eBook では、

https://elib.maruzen.co.jp/elib/html/BookDetail/Id/3000046843 でアクセスできる. この eBook まともな目次を付けてほしい.