next up previous
Next: 2 the shortest introduction Up: How to use Hirano's Previous: How to use Hirano's

1 the target eigenvalue problem

$\displaystyle \Omega:=(0,1)\times(0,1),
$

$\displaystyle \Laplacian^2 u=\lambda u$   in $ \Omega$ $\displaystyle ,
$

$\displaystyle \mu\Laplacian u+\left(1-\mu\right)\frac{\rd^2 u}{\rd n^2}=0$   (on $ \rd\Omega$ )$\displaystyle ,
$

$\displaystyle \frac{\rd}{\rd n}\left(\Laplacian u+\left(1-\mu\right)\frac{\rd^2
u}{\rd \tau^2}\right)=0
\quad\text{(on $\rd\Omega$)},
$

$ \mu$ : given positive constant (Poisson ratio of the material), $ n$ : the outward unit normal vector of the boundary, $ \tau$ : the unit tangential vector of the boundary.

$\displaystyle 0=\lambda_1=\lambda_2=\lambda_3<\lambda_4<\cdots
$


next up previous
Next: 2 the shortest introduction Up: How to use Hirano's Previous: How to use Hirano's
桂田 祐史
2014-05-27