/*
* Newton-glsc.c
* 非線形 2 点境界値問題
* -u''=u^2 in (0,1), u(0)=u(1)=0
* を差分法で離散化して得られる非線形方程式を Newton 法で解く。
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
typedef double *vector;
vector new_vector(int n)
{
return malloc(sizeof(double) * n);
}
double dotprod(int n, vector x, vector y)
{
int i;
double s;
s=0;
for (i=0; i< n; i++)
s += x[i] * y[i];
return s;
}
#define G_DOUBLE
#include <glsc.h>
#include "trid-lu.h"
/* 三重対角行列とベクトルのかけ算 */
void mul_mv(int n,
vector ab,
vector al, vector ad, vector au,
vector b)
{
int i, nm1 = n - 1;
ab[0] = ad[0] * b[0] + au[0] * b[1];
for (i = 1; i < nm1; i++)
ab[i] = al[i] * b[i-1] + ad[i] * b[i] + au[i] * b[i+1];
ab[nm1] = al[nm1] * b[nm1-1] + ad[nm1] * b[nm1];
}
double norm(int n, vector x)
{
return sqrt(dotprod(n, x, x));
}
int main(void)
{
int N, i, k;
vector al,ad,au,akl,akd,aku;
vector U, x;
double h, h2, du, H;
double win_width, win_height, w_margin, h_margin;
N = 100;
h = 1.0 / N;
h2 = h * h;
al = new_vector(N+1); ad = new_vector(N+1); au = new_vector(N+1);
akl = new_vector(N+1); akd = new_vector(N+1); aku = new_vector(N+1);
U = new_vector(N+1);
x = new_vector(N+1);
/* 初期値 */
printf("H (10位でOK)="); scanf("%lg", &H);
for (i = 0; i <= N; i++)
U[i] = H;
U[0] = U[N] = 0.0;
/* A */
for (i = 1; i < N; i++) {
al[i] = - 1.0 / h2; ad[i] = 2.0 / h2; au[i] = - 1.0 / h2;
}
/* GLSC初期化 */
win_width = 150.0; win_height = 150.0; w_margin = 5.0; h_margin = 5.0;
g_init("NewtonMeta", win_width + 2 * w_margin, win_height + 2 * h_margin);
/* 画面とメタファイルの両方に記録する */
g_device(G_BOTH);
/* 座標系の定義: [-0.2,1.2]×[-2.0, 20.0] という閉領域を表示する */
g_def_scale(0,
-0.2, 1.2, -2.0, 20.0,
w_margin, h_margin, win_width, win_height);
/* 線を二種類用意する */
g_def_line(0, G_BLACK, 0, G_LINE_SOLID);
g_def_line(1, G_BLACK, 0, G_LINE_DOTS);
/* 表示するための文字列の属性を定義する */
g_def_text(0, G_BLACK, 3);
/* 定義したものを選択する */
g_sel_scale(0); g_sel_line(0); g_sel_text(0);
/* タイトル表示 */
g_text(40.0, 20.0, "-u''=u^2 in (0,1), u(0)=u(1)=0");
/* 点線 */
g_sel_line(1);
/* 座標軸 */
g_move(-0.2, 0.0); g_plot(1.2, 0.0); g_move(0.0, -2.0); g_plot(0.0, 20.0);
/* 高さ 10 */
g_move(-0.2, 10.0); g_plot(1.2, 10.0);
for (k = 1; k < 100; k++) {
/* A U^k の計算 */
mul_mv(N - 1, x+1, al+1, ad+1, au+1, U+1);
/* A_k=F(U^k) の計算 */
for (i = 1; i < N; i++)
x[i] -= U[i] * U[i];
/* F'(U^k) の計算 */
for (i = 1; i < N; i++) {
akl[i] = al[i]; akd[i] = ad[i] - 2 * U[i]; aku[i] = au[i];
}
/* F'(U^k)^{-1} U(U^k) の計算 */
trid(N-1, akl+1, akd+1, aku+1, x+1);
/* */
du = norm(N-1, x+1);
printf("du=%g\n", du);
/* U^{k+1} の計算 */
for (i = 1; i < N; i++)
U[i] -= x[i];
/* */
#ifdef NONE
for (i = 0; i <= N; i++)
printf("U[%d]=%g\n", i, U[i]);
#endif
g_sel_line(0);
g_move(0.0, U[0]);
for (i = 1; i <= N; i++)
g_plot(i * h, U[i]);
if (du < 1.0e-12)
break;
}
{
double min, max;
max = U[0]; min = U[0];
for (i = 1; i <= N; i++) {
if (U[i] > max)
max = U[i];
else if (U[i] < min)
min = U[i];
}
printf("min=%g, max=%g\n", min, max);
}
g_sleep(-1.0);
g_term();
return 0;
}