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1 Introduction

The GNU Scientific Library (GSL) is a collection of routines for numerical computing.
The routines have been written from scratch in C, and present a modern Applications
Programming Interface (API) for C programmers, allowing wrappers to be written for very
high level languages. The source code is distributed under the GNU General Public License.

1.1 Routines available in GSL

The library covers a wide range of topics in numerical computing. Routines are available
for the following areas,

Complex Numbers Roots of Polynomials
Special Functions Vectors and Matrices
Permutations Combinations

Sorting BLAS Support

Linear Algebra BLAS Support

Fast Fourier Transforms Eigensystems

Random Numbers Quadrature

Random Distributions Quasi-Random Sequences
Histograms Statistics

Monte Carlo Integration N-Tuples

Differential Equations Simulated Annealing
Numerical Differentiation Interpolation

Series Acceleration Chebyshev Approximations
Root-Finding Discrete Hankel Transforms
Least-Squares Fitting Minimization

IEEE Floating-Point Physical Constants

The use of these routines is described in this manual. Each chapter provides detailed
definitions of the functions, followed by example programs and references to the articles on
which the algorithms are based.

1.2 GSL is Free Software

The subroutines in the GNU Scientific Library are “free software”; this means that
everyone is free to use them, and to redistribute them in other free programs. The library
is not in the public domain; it is copyrighted and there are conditions on its distribution.
These conditions are designed to permit everything that a good cooperating citizen would
want to do. What is not allowed is to try to prevent others from further sharing any version
of the software that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of any
programs related to the GNU Scientific Library, that you receive their source code or else
can get it if you want it, that you can change these programs or use pieces of them in new
free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of any related code which uses the
GNU Scientific Library, you must give the recipients all the rights that you have. You must
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make sure that they, too, receive or can get the source code. And you must tell them their
rights. This means that the library should not be redistributed in proprietary programs.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the GNU Scientific Library. If these programs are modified by someone
else and passed on, we want their recipients to know that what they have is not what we
distributed, so that any problems introduced by others will not reflect on our reputation.

The precise conditions for the distribution of software related to the GNU Scientific
Library are found in the GNU General Public License (see [GNU General Public License],
page 419). Further information about this license is available from the GNU Project web-
page Frequently Asked Questions about the GNU GPL,

http://wuw.gnu.org/copyleft/gpl-faq.html

1.3 Obtaining GSL

The source code for the library can be obtained in different ways, by copying it from a
friend, purchasing it on CDROM or downloading it from the internet. A list of public ftp
servers which carry the source code can be found on the GNU website,

http://www.gnu.org/software/gsl/

The preferred platform for the library is a GNU system, which allows it to take advantage of
additional features in the GNU C compiler and GNU C library. However, the library is fully
portable and compiles on most Unix platforms. It is also available for Microsoft Windows.
Precompiled versions of the library can be purchased from commercial redistributors listed
on the website.

Announcements of new releases, updates and other relevant events are made on the gs1-
announce mailing list. To subscribe to this low-volume list, send an email of the following
form,

To: gsl-announce-request@sources.redhat.com
Subject: subscribe

You will receive a response asking to you to reply in order to confirm your subscription.

1.4 An Example Program

The following short program demonstrates the use of the library by computing the value
of the Bessel function Jy(z) for x = 5,

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int
main (void)
{
double x = 5.0;
double y = gsl_sf_bessel_JO (x);

printf("J0(%g) = %.18e\n", x, y);
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return O;

¥

The output is shown below, and should be correct to double-precision accuracy,
JO(5) = -1.775967713143382920e-01

The steps needed to compile programs which use the library are described in the next
chapter.

1.5 No Warranty

The software described in this manual has no warranty, it is provided "as is". It is your
responsibility to validate the behavior of the routines and their accuracy using the source
code provided. Consult the GNU General Public license for further details (see [GNU
General Public License|, page 419).

1.6 Further Information

Additional information, including online copies of this manual, links to related projects,
and mailing list archives are available from the development website mentioned above. The
developers of the library can be reached via the project’s public mailing list,

gsl-discuss@sources.redhat.com

This mailing list can be used to ask questions not covered by this manual.
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2 Using the library

This chapter describes how to compile programs that use GSL, and introduces its con-
ventions.

2.1 ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard.
It should be portable to any system with a working ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it exports to the
user. Programs you write using GSL can be ANSI compliant. Extensions which can be used
in a way compatible with pure ANSI C are supported, however, via conditional compilation.
This allows the library to take advantage of compiler extensions on those platforms which
support them.

When an ANSI C feature is known to be broken on a particular system the library will
exclude any related functions at compile-time. This should make it impossible to link a
program that would use these functions and give incorrect results.

To avoid namespace conflicts all exported function names and variables have the prefix
gsl_, while exported macros have the prefix GSL_.

2.2 Compiling and Linking

The library header files are installed in their own ‘gsl’ directory. You should write any
preprocessor include statements with a ‘gsl/’ directory prefix thus,

#include <gsl/gsl_math.h>

If the directory is not installed on the standard search path of your compiler you will also
need to provide its location to the preprocessor as a command line flag. The default location
of the ‘gsl’ directory is ‘/usr/local/include/gsl’. A typical compilation command for a
source file ‘app.c’ with the GNU C compiler gcc is,

gcc -I/usr/local/include -c app.c

This results in an object file ‘app.o’. The default include path for gcc searches
‘/usr/local/include’ automatically so the -I option can be omitted when GSL is
installed in its default location.

The library is installed as a single file, ‘1ibgsl.a’. A shared version of the library is
also installed on systems that support shared libraries. The default location of these files
is ‘/usr/local/1ib’. To link against the library you need to specify both the main library
and a supporting CBLAS library, which provides standard basic linear algebra subroutines.
A suitable CBLAS implementation is provided in the library ‘1ibgslcblas.a’ if your system
does not provide one. The following example shows how to link an application with the
library,

gcc app.o -lgsl -lgslcblas —-1m
The following command line shows how you would link the same application with an alter-
native blas library called ‘libcblas’,
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gcc app.o -lgsl -lcblas —1m
For the best performance an optimized platform-specific CBLAS library should be used for
-1cblas. The library must conform to the CBLAS standard. The ATLAS package provides
a portable high-performance BLAS library with a CBLAS interface. It is free software and
should be installed for any work requiring fast vector and matrix operations. The following
command line will link with the ATLAS library and its CBLAS interface,

gcc app.o -lgsl -lcblas -latlas -1m
For more information see Chapter 12 [BLAS Support], page 114.

The program gsl-config provides information on the local version of the library. For
example, the following command shows that the library has been installed under the direc-
tory ‘/usr/local’,

bash$ gsl-config --prefix
/usr/local
Further information is available using the command gsl-config --help.

2.3 Shared Libraries

To run a program linked with the shared version of the library it may be necessary
to define the shell variable LD_LIBRARY_PATH to include the directory where the library is
installed. For example,

LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH ./app
To compile a statically linked version of the program instead, use the -static flag in gcc,
gcc -static app.o -1lgsl -lgslcblas -1m

2.4 Autoconf macros

For applications using autoconf the standard macro AC_CHECK_LIB can be used to link
with the library automatically from a configure script. The library itself depends on the
presence of a CBLAS and math library as well, so these must also be located before linking
with the main 1ibgs1 file. The following commands should be placed in the ‘configure.in’
file to perform these tests,

AC_CHECK_LIB(m,main)
AC_CHECK_LIB(gslcblas,main)
AC_CHECK_LIB(gsl,main)

Assuming the libraries are found the output during the configure stage looks like this,

checking for main in -1m... yes
checking for main in -lgslcblas... yes
checking for main in -1gsl... yes

If the library is found then the tests will define the macros HAVE_LIBGSL, HAVE_
LIBGSLCBLAS, HAVE_LIBM and add the options -1gsl -lgslcblas -1m to the variable
LIBS.

The tests above will find any version of the library. They are suitable for general use,
where the versions of the functions are not important. An alternative macro is available in
the file ‘gs1.m4’ to test for a specific version of the library. To use this macro simply add
the following line to your ‘configure.in’ file instead of the tests above:
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AM_PATH_GSL(GSL_VERSION,
[action-if-found],
[action-if-not-found])
The argument GSL_VERSION should be the two or three digit MAJOR.MINOR or
MAJOR.MINOR.MICRO version number of the release you require. A suitable choice for
action-if-not-found is,
AC_MSG_ERROR(could not find required version of GSL)

Then you can add the variables GSL_LIBS and GSL_CFLAGS to your Makefile.am files to
obtain the correct compiler flags. GSL_LIBS is equal to the output of the gsl-config —-
1ibs command and GSL_CFLAGS is equal to gsl-config --cflags command. For example,
libgsdv_la_LDFLAGS = \
$(GTK_LIBDIR) \
$(GTK_LIBS) -1lgsdvgsl $(GSL_LIBS) -lgslcblas

Note that the macro AM_PATH_GSL needs to use the C compiler so it should appear in the
‘configure.in’ file before the macro AC_LANG_CPLUSPLUS for programs that use C++.

2.5 Inline functions

The inline keyword is not part of ANSI C and the library does not export any in-
line function definitions by default. However, the library provides optional inline versions
of performance-critical functions by conditional compilation. The inline versions of these
functions can be included by defining the macro HAVE_INLINE when compiling an applica-
tion.

gcc —-c -DHAVE_INLINE app.c

If you use autoconf this macro can be defined automatically. The following test should be
placed in your ‘configure.in’ file,

AC_C_INLINE

if test "$ac_cv_c_inline" !'= no ; then
AC_DEFINE(HAVE_INLINE,1)
AC_SUBST (HAVE_INLINE)

fi

and the macro will then be defined in the compilation flags or by including the file ‘config.h’
before any library headers. If you do not define the macro HAVE_INLINE then the slower
non-inlined versions of the functions will be used instead.

Note that the actual usage of the inline keyword is extern inline, which eliminates
unnecessary function definitions in Gec. If the form extern inline causes problems with
other compilers a stricter autoconf test can be used, see Appendix C [Autoconf Macros],
page 403.

2.6 Long double

The extended numerical type long double is part of the ANSI C standard and should
be available in every modern compiler. However, the precision of long double is platform
dependent, and this should be considered when using it. The IEEE standard only specifies
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the minimum precision of extended precision numbers, while the precision of double is the
same on all platforms.

In some system libraries the stdio.h formatted input/output functions printf and
scanf are not implemented correctly for long double. Undefined or incorrect results are
avoided by testing these functions during the configure stage of library compilation and
eliminating certain GSL functions which depend on them if necessary. The corresponding
line in the configure output looks like this,

checking whether printf works with long double... no

Consequently when long double formatted input/output does not work on a given system
it should be impossible to link a program which uses GSL functions dependent on this.

If it is necessary to work on a system which does not support formatted long double
input/output then the options are to use binary formats or to convert long double results
into double for reading and writing.

2.7 Portability functions

To help in writing portable applications GSL provides some implementations of func-
tions that are found in other libraries, such as the BSD math library. You can write your
application to use the native versions of these functions, and substitute the GSL versions
via a preprocessor macro if they are unavailable on another platform. The substitution can
be made automatically if you use autoconf. For example, to test whether the BSD function
hypot is available you can include the following line in the configure file ‘configure.in’ for
your application,

AC_CHECK_FUNCS (hypot)
and place the following macro definitions in the file ‘config.h.in’,
/* Substitute gsl_hypot for missing system hypot */

#ifndef HAVE_HYPOT
#define hypot gsl_hypot
#endif

The application source files can then use the include command #include <config.h> to
substitute gsl_hypot for each occurrence of hypot when hypot is not available.

In most circumstances the best strategy is to use the native versions of these functions
when available, and fall back to GSL versions otherwise, since this allows your application
to take advantage of any platform-specific optimizations in the system library. This is the
strategy used within GSL itself.

2.8 Alternative optimized functions

The main implementation of some functions in the library will not be optimal on all
architectures. For example, there are several ways to compute a Gaussian random variate
and their relative speeds are platform-dependent. In cases like this the library provides
alternate implementations of these functions with the same interface. If you write your
application using calls to the standard implementation you can select an alternative version
later via a preprocessor definition. It is also possible to introduce your own optimized
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functions this way while retaining portability. The following lines demonstrate the use of a
platform-dependent choice of methods for sampling from the Gaussian distribution,

#ifdef SPARC

#define gsl_ran_gaussian gsl_ran_gaussian_ratio_method

#endif

#ifdef INTEL

#define gsl_ran_gaussian my_gaussian

#endif
These lines would be placed in the configuration header file ‘config.h’ of the application,
which should then be included by all the source files. Note that the alternative implemen-
tations will not produce bit-for-bit identical results, and in the case of random number
distributions will produce an entirely different stream of random variates.

2.9 Support for different numeric types

Many functions in the library are defined for different numeric types. This feature is
implemented by varying the name of the function with a type-related modifier — a primitive
form of C++ templates. The modifier is inserted into the function name after the initial
module prefix. The following table shows the function names defined for all the numeric

types of an imaginary module gsl_foo with function fn,

gsl_foo_fn double
gsl_foo_long_double_fn  long double
gsl_foo_float_fn float
gsl_foo_long_fn long
gsl_foo_ulong_fn unsigned long
gsl_foo_int_fn int
gsl_foo_uint_fn unsigned int
gsl_foo_short_fn short
gsl_foo_ushort_fn unsigned short
gsl_foo_char_fn char

gsl_foo_uchar_fn

unsigned char

The normal numeric precision double is considered the default and does not require a
suffix. For example, the function gsl_stats_mean computes the mean of double precision
numbers, while the function gsl_stats_int_mean computes the mean of integers.

A corresponding scheme is used for library defined types, such as gsl_vector and gsl_
matrix. In this case the modifier is appended to the type name. For example, if a module
defines a new type-dependent struct or typedef gsl_foo it is modified for other types in

the following way,

gsl_foo double
gsl_foo_long_double long double
gsl_foo_float float
gsl_foo_long long
gsl_foo_ulong unsigned long
gsl_foo_int int
gsl_foo_uint unsigned int
gsl_foo_short short

gsl_foo_ushort

unsigned short
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gsl_foo_char char

gsl_foo_uchar unsigned char
When a module contains type-dependent definitions the library provides individual header
files for each type. The filenames are modified as shown in the below. For convenience the
default header includes the definitions for all the types. To include only the double precision
header, or any other specific type, file use its individual filename.

#include <gsl/gsl_foo.h> A1l types
#include <gsl/gsl_foo_double.h> double
#include <gsl/gsl_foo_long_double.h> 1long double
#include <gsl/gsl_foo_float.h> float
#include <gsl/gsl_foo_long.h> long

#include <gsl/gsl_foo_ulong.h> unsigned long
#include <gsl/gsl_foo_int.h> int

#include <gsl/gsl_foo_uint.h> unsigned int
#include <gsl/gsl_foo_short.h> short
#include <gsl/gsl_foo_ushort.h> unsigned short
#include <gsl/gsl_foo_char.h> char

#include <gsl/gsl_foo_uchar.h> unsigned char

2.10 Compatibility with C++

The library header files automatically define functions to have extern "C" linkage when
included in C++ programs.

2.11 Aliasing of arrays

The library assumes that arrays, vectors and matrices passed as modifiable arguments
are not aliased and do not overlap with each other. This removes the need for the library to
handle overlapping memory regions as a special case, and allows additional optimizations to
be used. If overlapping memory regions are passed as modifiable arguments then the results
of such functions will be undefined. If the arguments will not be modified (for example, if a
function prototype declares them as const arguments) then overlapping or aliased memory
regions can be safely used.

2.12 Thread-safety

The library can be used in multi-threaded programs. All the functions are thread-safe,
in the sense that they do not use static variables. Memory is always associated with objects
and not with functions. For functions which use workspace objects as temporary storage
the workspaces should be allocated on a per-thread basis. For functions which use table
objects as read-only memory the tables can be used by multiple threads simultaneously.
Table arguments are always declared const in function prototypes, to indicate that they
may be safely accessed by different threads.

There are a small number of static global variables which are used to control the overall
behavior of the library (e.g. whether to use range-checking, the function to call on fatal
error, etc). These variables are set directly by the user, so they should be initialized once
at program startup and not modified by different threads.
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2.13 Code Reuse

Where possible the routines in the library have been written to avoid dependencies
between modules and files. This should make it possible to extract individual functions for
use in your own applications, without needing to have the whole library installed. You may
need to define certain macros such as GSL_ERROR and remove some #include statements
in order to compile the files as standalone units. Reuse of the library code in this way is
encouraged, subject to the terms of the GNU General Public License.
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3 Error Handling

This chapter describes the way that GSL functions report and handle errors. By ex-
amining the status information returned by every function you can determine whether it
succeeded or failed, and if it failed you can find out what the precise cause of failure was.
You can also define your own error handling functions to modify the default behavior of the
library.

The functions described in this section are declared in the header file ‘gsl_errno.h’.

3.1 Error Reporting

The library follows the thread-safe error reporting conventions of the POSIX Threads
library. Functions return a non-zero error code to indicate an error and 0 to indicate
success.

int status = gsl_function(...)

if (status) { /* an error occurred */
/* status value specifies the type of error */

}

The routines report an error whenever they cannot perform the task requested of them.
For example, a root-finding function would return a non-zero error code if could not converge
to the requested accuracy, or exceeded a limit on the number of iterations. Situations like
this are a normal occurrence when using any mathematical library and you should check
the return status of the functions that you call.

Whenever a routine reports an error the return value specifies the type of error. The
return value is analogous to the value of the variable errno in the C library. The caller can
examine the return code and decide what action to take, including ignoring the error if it
is not considered serious.

In addition to reporting errors by return codes the library also has an error handler
function gsl_error. This function is called by other library functions when they report an
error, just before they return to the caller. The default behavior of the error handler is to
print a message and abort the program,

gsl: file.c:67: ERROR: invalid argument supplied by user
Default GSL error handler invoked.
Aborted

The purpose of the gsl_error handler is to provide a function where a breakpoint can
be set that will catch library errors when running under the debugger. It is not intended
for use in production programs, which should handle any errors using the return codes.

3.2 Error Codes

The error code numbers returned by library functions are defined in the file
‘gsl_errno.h’. They all have the prefix GSL_ and expand to non-zero constant integer
values. Many of the error codes use the same base name as a corresponding error code in
C library. Here are some of the most common error codes,
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int GSL_EDOM Macro

Domain error; used by mathematical functions when an argument value does not fall
into the domain over which the function is defined (like EDOM in the C library)

int GSL_LERANGE Macro
Range error; used by mathematical functions when the result value is not repre-
sentable because of overflow or underflow (like ERANGE in the C library)

int GSL_LENOMEM Macro
No memory available. The system cannot allocate more virtual memory because its
capacity is full (like ENOMEM in the C library). This error is reported when a GSL
routine encounters problems when trying to allocate memory with malloc.

int GSL_EINVAL Macro
Invalid argument. This is used to indicate various kinds of problems with passing the
wrong argument to a library function (like EINVAL in the C library).

The error codes can be converted into an error message using the function gsl_strerror.

const char * gsl strerror (const int gsl errno) Function
This function returns a pointer to a string describing the error code gsl_errno. For
example,

printf("error: %s\n", gsl_strerror (status));

would print an error message like error: output range error for a status value of
GSL_ERANGE.

3.3 Error Handlers

The default behavior of the GSL error handler is to print a short message and call
abort (). When this default is in use programs will stop with a core-dump whenever a
library routine reports an error. This is intended as a fail-safe default for programs which
do not check the return status of library routines (we don’t encourage you to write programs
this way).

If you turn off the default error handler it is your responsibility to check the return
values of routines and handle them yourself. You can also customize the error behavior
by providing a new error handler. For example, an alternative error handler could log all
errors to a file, ignore certain error conditions (such as underflows), or start the debugger
and attach it to the current process when an error occurs.

All GSL error handlers have the type gsl_error_handler_t, which is defined in
‘gsl_errno.h’,

gsl_error_handler_t Data Type
This is the type of GSL error handler functions. An error handler will be passed four
arguments which specify the reason for the error (a string), the name of the source file
in which it occurred (also a string), the line number in that file (an integer) and the
error number (an integer). The source file and line number are set at compile time
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using the __FILE__ and __LINE__ directives in the preprocessor. An error handler
function returns type void. Error handler functions should be defined like this,
void handler (const char * reason,
const char * file,
int line,
int gsl_errno)

To request the use of your own error handler you need to call the function gsl_set_error_
handler which is also declared in ‘gsl_errno.h’,

gsl_error_handler_t * gsl set_error_handler Function
(gsl_error_handler_t new_handler)

This functions sets a new error handler, new_handler, for the GSL library routines.
The previous handler is returned (so that you can restore it later). Note that the
pointer to a user defined error handler function is stored in a static variable, so there
can be only one error handler per program. This function should be not be used in
multi-threaded programs except to set up a program-wide error handler from a master
thread. The following example shows how to set and restore a new error handler,

/* save original handler, install new handler */

0ld_handler = gsl_set_error_handler (&my_handler);

/* code uses new handler */

/* restore original handler */
gsl_set_error_handler (old_handler);

To use the default behavior (abort on error) set the error handler to NULL,
0ld_handler = gsl_set_error_handler (NULL);

gsl_error_handler_t * gsl_set_error_handler_off () Function
This function turns off the error handler by defining an error handler which does
nothing. This will cause the program to continue after any error, so the return values
from any library routines must be checked. This is the recommended behavior for
production programs. The previous handler is returned (so that you can restore it
later).

The error behavior can be changed for specific applications by recompiling the library
with a customized definition of the GSL_ERROR macro in the file ‘gsl_errno.h’.

3.4 Using GSL error reporting in your own functions

If you are writing numerical functions in a program which also uses GSL code you may
find it convenient to adopt the same error reporting conventions as in the library.

To report an error you need to call the function gsl_error with a string describing the
error and then return an appropriate error code from gsl_errno.h, or a special value, such
as NaN. For convenience the file ‘gsl_errno.h’ defines two macros which carry out these
steps:
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GSL_ERROR (reason, gsl_errno) Macro
This macro reports an error using the GSL conventions and returns a status value of
gsl_errno. It expands to the following code fragment,

gsl_error (reason, __FILE__, __LINE__, gsl_errno);

return gsl_errno;
The macro definition in ‘gsl_errno.h’ actually wraps the codeinado { ... } while
(0) block to prevent possible parsing problems.

Here is an example of how the macro could be used to report that a routine did not
achieve a requested tolerance. To report the error the routine needs to return the error
code GSL_ETOL.

if (residual > tolerance)

{
GSL_ERROR("residual exceeds tolerance", GSL_ETOL);
}
GSL_ERROR_VAL (reason, gsl_errno, value) Macro

This macro is the same as GSL_ERROR but returns a user-defined status value of value
instead of an error code. It can be used for mathematical functions that return a
floating point value.

The following example shows how to return a NaN at a mathematical singularity using
the GSL_ERROR_VAL macro,
if (x == 0)
{
GSL_ERROR_VAL ("argument lies on singularity",
GSL_ERANGE, GSL_NAN);

3.5 Examples

Here is an example of some code which checks the return value of a function where an
error might be reported,
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>

int

main (void)

{
int status;
gsl_set_error_handler_off();

status = gsl_fft_complex_radix2_forward (data, n);

if (status) {
if (status == GSL_EINVAL) {
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fprintf (stderr, "invalid argument, n=%d\n", n);

} else {
fprintf (stderr, "failed, gsl_errno=%d\n",
status) ;
}
exit (-1);
}
exit (0);

}

The function gsl_fft_complex_radix2 only accepts integer lengths which are a power of
two. If the variable n is not a power of two then the call to the library function will return
GSL_EINVAL, indicating that the length argument is invalid. The function call to gsl_set_
error_handler_off () stops the default error handler from aborting the program. The
else clause catches any other possible errors.
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4 Mathematical Functions

This chapter describes basic mathematical functions. Some of these functions are present
in system libraries, but the alternative versions given here can be used as a substitute when
the system functions are not available.

The functions and macros described in this chapter are defined in the header file
‘gsl_math.h’.

4.1 Mathematical Constants

The library ensures that the standard BSD mathematical constants are defined. For
reference here is a list of the constants.

M_E The base of exponentials, e
M_LOG2E  The base-2 logarithm of e, log,(e)
M_LOG10E The base-10 logarithm of e, log;,(e)
M_SQRT2  The square root of two, v/2

M_SQRT1_2
The square root of one-half, \/1/2

M_SQRT3  The square root of three, v/3
M_PI The constant pi, 7

M_PI_2 Pi divided by two, 7/2
M_PI_4 Pi divided by four, /4
M_SQRTPI The square root of pi, /7

M_2_SQRTPI
Two divided by the square root of pi, 2//m

M_1_PI The reciprocal of pi, 1/m

M_2_PI Twice the reciprocal of pi, 2/7
M_LN10 The natural logarithm of ten, In(10)
M_LN2 The natural logarithm of two, In(2)
M_LNPI The natural logarithm of pi, In()

M_EULER  Euler’s constant, v
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4.2 Infinities and Not-a-number

GSL_POSINF Macro

This macro contains the IEEE representation of positive infinity, +o0o. It is computed
from the expression +1.0/0.0.

GSL_NEGINF Macro
This macro contains the IEEE representation of negative infinity, —co. It is computed
from the expression -1.0/0.0.

GSL_NAN Macro
This macro contains the IEEE representation of the Not-a-Number symbol, NaN. It
is computed from the ratio 0.0/0.0.

int gsl_isnan (const double x) Function
This function returns 1 if x is not-a-number.

int gsl_ isinf (const double x) Function
This function returns +1 if x is positive infinity, —1 if x is negative infinity and 0
otherwise.

int gsl finite (const double x) Function

This function returns 1 if x is a real number, and 0 if it is infinite or not-a-number.

4.3 Elementary Functions

The following routines provide portable implementations of functions found in the BSD
math library. When native versions are not available the functions described here can be
used instead. The substitution can be made automatically if you use autoconf to compile
your application (see Section 2.7 [Portability functions|, page 7).

double gsl_loglp (const double x) Function
This function computes the value of log(1 4+ z) in a way that is accurate for small x.
It provides an alternative to the BSD math function loglp(x).

double gsl_expml (const double x) Function
This function computes the value of exp(z) — 1 in a way that is accurate for small x.
It provides an alternative to the BSD math function expm1 (x).

double gsl_hypot (const double x, const double y) Function
This function computes the value of /z? + y? in a way that avoids overflow. It
provides an alternative to the BSD math function hypot (x,y).

double gsl_acosh (const double x) Function
This function computes the value of arccosh(z). It provides an alternative to the
standard math function acosh(x).
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double gsl_asinh (const double x) Function
This function computes the value of arcsinh(x). It provides an alternative to the
standard math function asinh(x).

double gsl_atanh (const double x) Function
This function computes the value of arctanh(x). It provides an alternative to the
standard math function atanh(x).

double gsl ldexp (double x, int e) Function
This function computes the value of x * 2¢. It provides an alternative to the standard
math function 1dexp(x).

double gsl_frexp (double x, int * e) Function
This function splits the number x into its normalized fraction f and exponent e, such
that x = f % 2° and 0.5 < f < 1. The function returns f and stores the exponent in
e. If x is zero, both f and e are set to zero. This function provides an alternative to
the standard math function frexp(x, e).

4.4 Small integer powers

A common complaint about the standard C library is its lack of a function for calculating
(small) integer powers. GSL provides a simple functions to fill this gap. For reasons of
efficiency, these functions do not check for overflow or underflow conditions.

double gsl_pow_int (double x, int n) Function
This routine computes the power x™ for integer n. The power is computed using
the minimum number of multiplications. For example, z® is computed as ((z%)?)?,
requiring only 3 multiplications. A version of this function which also computes the
numerical error in the result is available as gsl_sf_pow_int_e.

double gsl_pow_2 (const double x) Function
double gsl_pow_3 (const double x) Function
double gsl_pow_4 (const double x) Function
double gsl_pow_5 (const double x) Function
double gsl_pow_6 (const double x) Function
double gsl_pow_7 (const double x) Function
double gsl_pow_8 (const double x) Function
double gsl_pow_9 (const double x) Function

These functions can be used to compute small integer powers x?2, x3, etc. efficiently.
The functions will be inlined when possible so that use of these functions should be
as efficient as explicitly writing the corresponding product expression.

#include <gsl/gsl_math.h>
double y = gsl_pow_4 (3.141) /* compute 3.141%*4 x/
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4.5 Testing the Sign of Numbers

GSL_SIGN (x) Macro
This macro returns the sign of x. It is defined as ((x) >= 07 1 : -1). Note that
with this definition the sign of zero is positive (regardless of its IEEE sign bit).

4.6 Testing for Odd and Even Numbers

GSL_IS_ODD (n) Macro
This macro evaluates to 1 if n is odd and 0 if n is even. The argument n must be of
integer type.

GSL_IS_EVEN (n) Macro
This macro is the opposite of GSL_IS_ODD(n). It evaluates to 1 if n is even and 0 if
n is odd. The argument n must be of integer type.

4.7 Maximum and Minimum functions

GSL_MAX (a, b) Macro

This macro returns the maximum of a and b. It is defined as ((a) > (b) 7 (a):(b)).

GSL_MIN (a, b) Macro

This macro returns the minimum of a and b. It is defined as ((a) < (b) ? (a):(b)).

extern inline double GSL_MAX_DBL (double a, double b) Function
This function returns the maximum of the double precision numbers a and b using
an inline function. The use of a function allows for type checking of the arguments
as an extra safety feature. On platforms where inline functions are not available the
macro GSL_MAX will be automatically substituted.

extern inline double GSL_MIN_DBL (double a, double b) Function
This function returns the minimum of the double precision numbers a and b using
an inline function. The use of a function allows for type checking of the arguments
as an extra safety feature. On platforms where inline functions are not available the
macro GSL_MIN will be automatically substituted.

extern inline int GSL_MAX_INT (int a, int b) Function

extern inline int GSL_MIN_INT (int a, int b) Function
These functions return the maximum or minimum of the integers a and b using an
inline function. On platforms where inline functions are not available the macros
GSL_MAX or GSL_MIN will be automatically substituted.
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extern inline long double GSL_MAX _LDBL (long double a, Function
long double b)
extern inline long double GSL_MIN_LDBL (long double a, Function

long double b)
These functions return the maximum or minimum of the long doubles a and b using
an inline function. On platforms where inline functions are not available the macros
GSL_MAX or GSL_MIN will be automatically substituted.

4.8 Approximate Comparison of Floating Point Numbers

It is sometimes useful to be able to compare two floating point numbers approximately,
to allow for rounding and truncation errors. The following function implements the ap-
proximate floating-point comparison algorithm proposed by D.E. Knuth in Section 4.2.2 of
Seminumerical Algorithms (3rd edition).

int gsl fcmp (double x, double y, double epsilon) Function
This function determines whether x and y are approximately equal to a relative
accuracy epsilon.

The relative accuracy is measured using an interval of size 28, where § = 2*¢ and k is
the maximimum base-2 exponent of x and y as computed by the function frexp().
If z and y lie within this interval, they are considered approximately equal and the
function returns 0. Otherwise if z < y, the function returns -1, or if z > y, the
function returns +1.

The implementation is based on the package fcmp by T.C. Belding.



Chapter 5: Complex Numbers 21

5 Complex Numbers

The functions described in this chapter provide support for complex numbers. The
algorithms take care to avoid unnecessary intermediate underflows and overflows, allowing
the functions to be evaluated over as much of the complex plane as possible.

For multiple-valued functions the branch cuts have been chosen to follow the conventions
of Abramowitz and Stegun in the Handbook of Mathematical Functions. The functions
return principal values which are the same as those in GNU Calc, which in turn are the
same as those in Common Lisp, The Language (Second Edition) (n.b. The second edition
uses different definitions from the first edition) and the HP-28/48 series of calculators.

The complex types are defined in the header file ‘gsl_complex.h’, while the correspond-
ing complex functions and arithmetic operations are defined in ‘gsl_complex_math.h’.

5.1 Complex numbers

Complex numbers are represented using the type gsl_complex. The internal represen-
tation of this type may vary across platforms and should not be accessed directly. The func-
tions and macros described below allow complex numbers to be manipulated in a portable
way.

For reference, the default form of the gs1_complex type is given by the following struct,

typedef struct
{

double dat[2];
} gsl_complex;
The real and imaginary part are stored in contiguous elements of a two element array. This
eliminates any padding between the real and imaginary parts, dat [0] and dat [1], allowing
the struct to be mapped correctly onto packed complex arrays.

gsl_complex gsl complex_rect (double x, double y) Function
This function uses the rectangular cartesian components (x,y) to return the complex
number z = x + 1y.

gsl_complex gsl_complex_polar (double r, double theta) Function
This function returns the complex number z = rexp(if) = r(cos(f) + isin(f)) from
the polar representation (r,theta).

GSL_REAL (z) Macro
GSL_IMAG (2) Macro

These macros return the real and imaginary parts of the complex number z.

GSL_SET_COMPLEX (zp, x, y) Macro
This macro uses the cartesian components (x,y) to set the real and imaginary parts
of the complex number pointed to by zp. For example,

GSL_SET_COMPLEX (&z, 3, 4)
sets z to be 3 + 4.
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GSL_SET_REAL (zp,x) Macro

GSL_SET_IMAG (zp,y) Macro
These macros allow the real and imaginary parts of the complex number pointed to
by zp to be set independently.

5.2 Properties of complex numbers

double gsl_complex_arg (gsl_complex z) Function
This function returns the argument of the complex number z, arg(z), where —7 <
arg(z) < .

double gsl_complex_abs (gsl_complex z) Function

This function returns the magnitude of the complex number z, |z|.

double gsl_complex_abs2 (gsl_complex z) Function
This function returns the squared magnitude of the complex number z, |z|?.

double gsl_complex_logabs (gsl_complex z) Function
This function returns the natural logarithm of the magnitude of the complex number
z, log|z|. It allows an accurate evaluation of log|z| when |z| is close to one. The
direct evaluation of log(gsl_complex_abs(z)) would lead to a loss of precision in
this case.

5.3 Complex arithmetic operators

gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b) Function
This function returns the sum of the complex numbers a and b, z = a + b.

gsl_complex gsl complex_sub (gsl_complex a, gsl_complex b) Function
This function returns the difference of the complex numbers a and b, z = a — b.

gsl_complex gsl complex_mul (gsl_complex a, gsl_complex b) Function
This function returns the product of the complex numbers a and b, z = ab.

gsl_complex gsl complex_div (gsl_complex a, gsl_complex b) Function
This function returns the quotient of the complex numbers a and b, z = a/b.

gsl_complex gsl_complex_add_real (gsl_complex a, double x) Function
This function returns the sum of the complex number a and the real number x,
z=a+x.

gsl_complex gsl complex_sub_real (gsl_complex a, double x) Function

This function returns the difference of the complex number a and the real number x,
z=a-—1z.
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gsl_complex gsl complex_mul real (gsl_complex a, double x) Function
This function returns the product of the complex number a and the real number x,
z = az.

gsl_complex gsl complex_div_real (gsl_complex a, double x) Function
This function returns the quotient of the complex number a and the real number x,
z=ajx.

gsl_complex gsl complex_add_imag (gsl_complex a, double y) Function
This function returns the sum of the complex number a and the imaginary number
1y, 2 = a + 1y.

gsl_complex gsl complex_sub_imag (gsl_complex a, double y) Function

This function returns the difference of the complex number a and the imaginary
number 1y, z = a — 1y.

gsl_complex gsl complex_mul_imag (gsl_complex a, double y) Function
This function returns the product of the complex number a and the imaginary number
iy, z = a* (iy).

gsl_complex gsl complex_div_imag (gsl_complex a, double y) Function
This function returns the quotient of the complex number a and the imaginary number
iy, z = a/(iy).

gsl_complex gsl complex_conjugate (gsl_complex z) Function

This function returns the complex conjugate of the complex number z, z* = x — iy.

gsl_complex gsl complex_inverse (gsl_complex z) Function
This function returns the inverse, or reciprocal, of the complex number z, 1/z =

(x —iy)/(z® + 9?).

gsl_complex gsl complex_negative (gsl_complex z) Function
This function returns the negative of the complex number z, —z = (—x) + i(—y).

5.4 Elementary Complex Functions

gsl_complex gsl complex_sqrt (gsl_complex z) Function
This function returns the square root of the complex number z, \/z. The branch cut
is the negative real axis. The result always lies in the right half of the complex plane.

gsl_complex gsl complex_sqrt_real (double x) Function
This function returns the complex square root of the real number x, where x may be
negative.
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gsl_complex gsl complex_pow (gsl_complex z, gsl_complex a) Function
The function returns the complex number z raised to the complex power a, z*. This
is computed as exp(log(z) * a) using complex logarithms and complex exponentials.

gsl_complex gsl complex_pow_real (gsl_complex z, double x) Function
This function returns the complex number z raised to the real power x, z%.

gsl_complex gsl complex_exp (gsl_complex z) Function
This function returns the complex exponential of the complex number z, exp(z).

gsl_complex gsl_complex_log (gsl_complex z) Function
This function returns the complex natural logarithm (base e) of the complex number
z, log(z). The branch cut is the negative real axis.

gsl_complex gsl complex_logl0 (gsl_complex z) Function
This function returns the complex base-10 logarithm of the complex number z,
logyo(2)-

gsl_complex gsl complex_log_b (gsl_complex z, gsl_complex b) Function

This function returns the complex base-b logarithm of the complex number z, log, (2).
This quantity is computed as the ratio log(z)/log(b).

5.5 Complex Trigonometric Functions

gsl_complex gsl complex_sin (gsl_complex z) Function
This function returns the complex sine of the complex number z, sin(z) = (exp(iz) —

exp(—i2))/(2).

gsl_complex gsl_complex_cos (gsl_complex z) Function
This function returns the complex cosine of the complex number z, cos(z) = (exp(iz)+

exp(—iz))/2.

gsl_complex gsl_complex_tan (gsl_complex z) Function
This function returns the complex tangent of the complex number z,
tan(z) = sin(z)/ cos(z).

gsl_complex gsl complex_sec (gsl_complex z) Function
This function returns the complex secant of the complex number z, sec(z) = 1/ cos(z).

gsl_complex gsl complex_csc (gsl_complex z) Function
This function returns the complex cosecant of the complex number z, csc(z) =
1/sin(z).

gsl_complex gsl complex_cot (gsl_complex z) Function

This function returns the complex cotangent of the complex number z, cot(z) =

1/ tan(z).
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5.6 Inverse Complex Trigonometric Functions

gsl_complex gsl complex_arcsin (gsl_complex z) Function
This function returns the complex arcsine of the complex number z, arcsin(z). The
branch cuts are on the real axis, less than —1 and greater than 1.

gsl_complex gsl_complex_arcsin_real (double z) Function
This function returns the complex arcsine of the real number z, arcsin(z). For z
between —1 and 1, the function returns a real value in the range (—m, 7. For z less
than —1 the result has a real part of —7/2 and a positive imaginary part. For z
greater than 1 the result has a real part of /2 and a negative imaginary part.

gsl_complex gsl complex_arccos (gsl_complex z) Function
This function returns the complex arccosine of the complex number z, arccos(z). The
branch cuts are on the real axis, less than —1 and greater than 1.

gsl_complex gsl complex_arccos_real (double z) Function
This function returns the complex arccosine of the real number z, arccos(z). For z
between —1 and 1, the function returns a real value in the range [0, 7]. For z less than
—1 the result has a real part of 7/2 and a negative imaginary part. For z greater
than 1 the result is purely imaginary and positive.

gsl_complex gsl complex_arctan (gsl_complex z) Function
This function returns the complex arctangent of the complex number z, arctan(z).
The branch cuts are on the imaginary axis, below —i and above 1.

gsl_complex gsl complex_arcsec (gsl_complex z) Function
This function returns the complex arcsecant of the complex number z, arcsec(z) =
arccos(1/z).

gsl_complex gsl complex_arcsec_real (double z) Function

This function returns the complex arcsecant of the real number z,
arcsec(z) = arccos(1/z).

gsl_complex gsl complex_arccsc (gsl_complex z) Function
This function returns the complex arccosecant of the complex number z, arccsc(z) =
arcsin(1/z).

gsl_complex gsl complex_arccsc_real (double z) Function
This function returns the complex arccosecant of the real number z, arccsc(z) =
arcsin(1/z).

gsl_complex gsl complex_arccot (gsl_complex z) Function

This function returns the complex arccotangent of the complex number z, arccot(z) =
arctan(1/z).
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5.7 Complex Hyperbolic Functions

gsl_complex gsl complex_sinh (gsl_complex z) Function
This function returns the complex hyperbolic sine of the complex number z, sinh(z) =

(exp(z) — exp(—2))/2.

gsl_complex gsl complex_cosh (gsl_complex z) Function
This function returns the complex hyperbolic cosine of the complex number z,
cosh(z) = (exp(z) + exp(—=z))/2.

gsl_complex gsl complex_tanh (gsl_complex z) Function

This function returns the complex hyperbolic tangent of the complex number z,
tanh(z) = sinh(z)/ cosh(z).

gsl_complex gsl_complex_sech (gsl_complex z) Function

This function returns the complex hyperbolic secant of the complex number z,
sech(z) = 1/ cosh(z).

gsl_complex gsl complex_csch (gsl_complex z) Function

This function returns the complex hyperbolic cosecant of the complex number z,
csch(z) = 1/sinh(z).

gsl_complex gsl_complex_coth (gsl_complex z) Function

This function returns the complex hyperbolic cotangent of the complex number z,
coth(z) = 1/ tanh(z).

5.8 Inverse Complex Hyperbolic Functions

gsl_complex gsl complex_arcsinh (gsl_complex z) Function
This function returns the complex hyperbolic arcsine of the complex number z,
arcsinh(z). The branch cuts are on the imaginary axis, below —i and above 1.

gsl_complex gsl complex_arccosh (gsl_complex z) Function
This function returns the complex hyperbolic arccosine of the complex number z,
arccosh(z). The branch cut is on the real axis, less than 1.

gsl_complex gsl complex_arccosh_real (double z) Function
This function returns the complex hyperbolic arccosine of the real number z,
arccosh(z).

gsl_complex gsl complex_arctanh (gsl_complex z) Function

This function returns the complex hyperbolic arctangent of the complex number z,
arctanh(z). The branch cuts are on the real axis, less than —1 and greater than 1.
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gsl_complex gsl complex_arctanh_real (double z) Function
This function returns the complex hyperbolic arctangent of the real number z,
arctanh(z).

gsl_complex gsl complex_arcsech (gsl_complex z) Function

This function returns the complex hyperbolic arcsecant of the complex number z,
arcsech(z) = arccosh(1/z).

gsl_complex gsl complex_arccsch (gsl_complex z) Function
This function returns the complex hyperbolic arccosecant of the complex number z,
arcesch(z) = arcsin(1/z).

gsl_complex gsl_complex_arccoth (gsl_complex z) Function
This function returns the complex hyperbolic arccotangent of the complex number z,
arccoth(z) = arctanh(1/z).

5.9 References and Further Reading

The implementations of the elementary and trigonometric functions are based on the fol-
lowing papers,
T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, "Implementing Complex El-
ementary Functions Using Exception Handling", ACM Transactions on Mathematical
Software, Volume 20 (1994), pp 215-244, Corrigenda, p553

T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, "Implementing the complex
arcsin and arccosine functions using exception handling", ACM Transactions on Math-
ematical Software, Volume 23 (1997) pp 299-335

The general formulas and details of branch cuts can be found in the following books,

Abramowitz and Stegun, Handbook of Mathematical Functions, "Circular Functions in
Terms of Real and Imaginary Parts", Formulas 4.3.55-58, "Inverse Circular Functions
in Terms of Real and Imaginary Parts", Formulas 4.4.37-39, "Hyperbolic Functions in
Terms of Real and Imaginary Parts", Formulas 4.5.49-52, "Inverse Hyperbolic Func-
tions — relation to Inverse Circular Functions", Formulas 4.6.14-19.

Dave Gillespie, Calc Manual, Free Software Foundation, ISBN 1-882114-18-3
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6 Polynomials

This chapter describes functions for evaluating and solving polynomials. There are
routines for finding real and complex roots of quadratic and cubic equations using analytic
methods. An iterative polynomial solver is also available for finding the roots of general
polynomials with real coefficients (of any order). The functions are declared in the header
file gs1_poly.h.

6.1 Polynomial Evaluation

double gsl_poly_eval (const double c[|, const int len, const Function
double x)
This function evaluates the polynomial c[0] + ¢[1]z + ¢[2]z? + ... + c[len — 1]zl"~?
using Horner’s method for stability. The function is inlined when possible.

6.2 Divided Difference Representation of Polynomials

The functions described here manipulate polynomials stored in Newton’s divided-
difference representation. The use of divided-differences is described in Abramowitz &
Stegun sections 25.1.4, 25.2.26.

int gsl poly_dd_init (double dd[], const double xa[], const double Function
yal], size_t size)
This function computes a divided-difference representation of the interpolating poly-
nomial for the points (xa, ya) stored in the arrays xa and ya of length size. On output
the divided-differences of (xa,ya) are stored in the array dd, also of length size.

double gsl_poly_dd_eval (const double dd[], const double xa[], Function
const size_t size, const double X)
This function evaluates the polynomial stored in divided-difference form in the arrays
dd and xa of length size at the point x.

int gsl_poly_dd_taylor (double c[], double xp, const double dd[], Function
const double xal], size_t size, double w[])
This function converts the divided-difference representation of a polynomial to a Tay-
lor expansion. The divided-difference representation is supplied in the arrays dd and
xa of length size. On output the Taylor coefficients of the polynomial expanded about
the point xp are stored in the array c also of length size. A workspace of length size
must be provided in the array w.
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6.3 Quadratic Equations

int gsl poly_solve_quadratic (double a, double b, double c, Function
double *x0, double *x1)
This function finds the real roots of the quadratic equation,

ar® +br+c=0
The number of real roots (either zero or two) is returned, and their locations are
stored in x0 and x1. If no real roots are found then x0 and x1 are not modified.
When two real roots are found they are stored in x0 and x1 in ascending order. The
case of coincident roots is not considered special. For example (z — 1)? = 0 will have
two roots, which happen to have exactly equal values.

The number of roots found depends on the sign of the discriminant b? —4ac. This will
be subject to rounding and cancellation errors when computed in double precision, and
will also be subject to errors if the coefficients of the polynomial are inexact. These
errors may cause a discrete change in the number of roots. However, for polynomials
with small integer coefficients the discriminant can always be computed exactly.

int gsl_poly_complex_solve_quadratic (double a, double b, Function
double ¢, gsl_complex *z0, gsl_complex *zl)
This function finds the complex roots of the quadratic equation,

az> +bz+c=0
The number of complex roots is returned (always two) and the locations of the roots
are stored in z0 and zI. The roots are returned in ascending order, sorted first by
their real components and then by their imaginary components.

6.4 Cubic Equations

int gsl_poly_solve_cubic (double a, double b, double ¢, double Function
*x(0, double *x1, double *x2)
This function finds the real roots of the cubic equation,

2’ +ar?+br+c=0
with a leading coefficient of unity. The number of real roots (either one or three) is
returned, and their locations are stored in x0, x1 and x2. If one real root is found
then only x0 is modified. When three real roots are found they are stored in x0, x1
and x2 in ascending order. The case of coincident roots is not considered special. For
example, the equation (x — 1)® = 0 will have three roots with exactly equal values.

int gsl_poly_complex_solve_cubic (double a, double b, double c, Function
gsl_complex *z0, gsl_complex *zI1, gsl_complex *z2)
This function finds the complex roots of the cubic equation,

2 4+az?+bz+c=0
The number of complex roots is returned (always three) and the locations of the roots

are stored in z0, z1 and z2. The roots are returned in ascending order, sorted first by
their real components and then by their imaginary components.
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6.5 General Polynomial Equations

The roots of polynomial equations cannot be found analytically beyond the special cases
of the quadratic, cubic and quartic equation. The algorithm described in this section uses
an iterative method to find the approximate locations of roots of higher order polynomials.

gsl_poly_complex_workspace * Function
gsl_poly_complex_workspace_alloc (size_t n)
This function allocates space for a gsl_poly_complex_workspace struct and a
workspace suitable for solving a polynomial with n coefficients using the routine
gsl_poly_complex_solve.

The function returns a pointer to the newly allocated gs1_poly_complex_workspace
if no errors were detected, and a null pointer in the case of error.

void gsl_poly_complex_workspace_free Function
(gsl_poly_complex_workspace * w)
This function frees all the memory associated with the workspace w.

int gsl _poly_complex_solve (const double * a, size_t n, Function

gsl_poly_complex_workspace * w, gsl_complex_packed_ptr z)
This function computes the roots of the general polynomial P(x) = ag+ ax + asz® +
wo. +a,_12" ! using balanced-QR reduction of the companion matrix. The parameter
n specifies the length of the coefficient array. The coefficient of the highest order term
must be non-zero. The function requires a workspace w of the appropriate size. The
n — 1 roots are returned in the packed complex array z of length 2(n — 1), alternating
real and imaginary parts.

The function returns GSL_SUCCESS if all the roots are found and GSL_EFAILED if the
QR reduction does not converge.

6.6 Examples

To demonstrate the use of the general polynomial solver we will take the polynomial
P(x) = 2° — 1 which has the following roots,

omi/5 _Ami/5 6mi)5 _8mi/5
1,e , € € , €

The following program will find these roots.

#include <stdio.h>
#include <gsl/gsl_poly.h>

int

main (void)

{
int 1i;
/* coefficient of P(x) = -1 + x°5 */
double a[6] = { -1, 0, 0, 0, 0, 1 };
double z[10];



Chapter 6: Polynomials 31

gsl_poly_complex_workspace * w
= gsl_poly_complex_workspace_alloc (6);

gsl_poly_complex_solve (a, 6, w, z);
gsl_poly_complex_workspace_free (w);

for (i = 0; i < 5; i++)
{
printf("z¥%d = %+.18f %+.18f\n",
i, z[2*i], z[2*i+1]);
}

return O;

}

The output of the program is,

bash$ ./a.out

z0 -0.809016994374947451 +0.587785252292473137
z1l = -0.809016994374947451 -0.587785252292473137
z2 = +0.309016994374947451 +0.951056516295153642
z3 = +0.309016994374947451 -0.951056516295153642
z4 = +1.000000000000000000 +0.000000000000000000

which agrees with the analytic result, z, = exp(27ni/5).

6.7 References and Further Reading

The balanced-QR method and its error analysis is described in the following papers.
R.S. Martin, G. Peters and J.H. Wilkinson, “The QR Algorithm for Real Hessenberg
Matrices”, Numerische Mathematik, 14 (1970), 219-231.
B.N. Parlett and C. Reinsch, “Balancing a Matrix for Calculation of Eigenvalues and
Eigenvectors”, Numerische Mathematik, 13 (1969), 293-304.

A. Edelman and H. Murakami, “Polynomial roots from companion matrix eigenvalues”,
Mathematics of Computation, Vol. 64 No. 210 (1995), 763-776.
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7 Special Functions

This chapter describes the GSL special function library. The library includes routines for
calculating the values of Airy functions, Bessel functions, Clausen functions, Coulomb wave
functions, Coupling coefficients, the Dawson function, Debye functions, Dilogarithms, Ellip-
tic integrals, Jacobi elliptic functions, Error functions, Exponential integrals, Fermi-Dirac
functions, Gamma functions, Gegenbauer functions, Hypergeometric functions, Laguerre
functions, Legendre functions and Spherical Harmonics, the Psi (Digamma) Function, Syn-
chrotron functions, Transport functions, Trigonometric functions and Zeta functions. Each
routine also computes an estimate of the numerical error in the calculated value of the
function.

The functions are declared in individual header files, such as ‘gsl_sf_airy.h’,
‘gsl_sf_bessel.h’; etc. The complete set of header files can be included using the file
3 )
gsl_sf.h’.

7.1 Usage

The special functions are available in two calling conventions, a natural form which
returns the numerical value of the function and an error-handling form which returns an
error code. The two types of function provide alternative ways of accessing the same
underlying code.

The natural form returns only the value of the function and can be used directly in
mathematical expressions.. For example, the following function call will compute the value
of the Bessel function Jy(z),

double y = gsl_sf_bessel_JO (x);

There is no way to access an error code or to estimate the error using this method. To allow
access to this information the alternative error-handling form stores the value and error in
a modifiable argument,

gsl_sf_result result;

int status = gsl_sf_bessel_JO_e (x, &result);

The error-handling functions have the suffix _e. The returned status value indicates error
conditions such as overflow, underflow or loss of precision. If there are no errors the error-
handling functions return GSL_SUCCESS.

7.2 The gsl_sf_result struct

The error handling form of the special functions always calculate an error estimate along
with the value of the result. Therefore, structures are provided for amalgamating a value
and error estimate. These structures are declared in the header file ‘gsl_sf_result.h’.

The gsl_sf_result struct contains value and error fields.

typedef struct
{
double val;
double err;
} gsl_sf_result;
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The field val contains the value and the field err contains an estimate of the absolute error
in the value.

In some cases, an overflow or underflow can be detected and handled by a function. In
this case, it may be possible to return a scaling exponent as well as an error/value pair
in order to save the result from exceeding the dynamic range of the built-in types. The
gsl_sf_result_el0 struct contains value and error fields as well as an exponent field such
that the actual result is obtained as result * 10~ (e10).

typedef struct
{
double val;
double err;
int el0;
} gsl_sf_result_el0;

7.3 Modes

The goal of the library is to achieve double precision accuracy wherever possible. How-
ever the cost of evaluating some special functions to double precision can be significant,
particularly where very high order terms are required. In these cases a mode argument
allows the accuracy of the function to be reduced in order to improve performance. The
following precision levels are available for the mode argument,

GSL_PREC_DOUBLE
Double-precision, a relative accuracy of approximately 2 x 10716,

GSL_PREC_SINGLE
Single-precision, a relative accuracy of approximately 1 x 1077.

GSL_PREC_APPROX
Approximate values, a relative accuracy of approximately 5 x 1074

The approximate mode provides the fastest evaluation at the lowest accuracy.

7.4 Airy Functions and Derivatives

The Airy functions Ai(x) and Bi(x) are defined by the integral representations,

1 [ 1

Ai(z) = ;/0 cos(gt?’ + xt)dt,
1 [ 3 1

Bi(z) = — / (€73 4 sin(=£* + zt))dt.
™ Jo 3

For further information see Abramowitz & Stegun, Section 10.4. The Airy functions are
defined in the header file ‘gsl_sf_airy.h’.

7.4.1 Airy Functions

double gsl _sf airy_Ai (double x, gsl_mode_t mode) Function
int gsl sf airy_Ai_e (double x, gsl_mode_t mode, gsl_sf_result * Function
result)

These routines compute the Airy function Ai(z) with an accuracy specified by mode.
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double gsl_sf airy Bi (double x, gsl_mode_t mode) Function
int gsl sf airy_Bi_e (double x, gsl_mode_t mode, gsl_sf_result * Function
result)

These routines compute the Airy function Bi(x) with an accuracy specified by mode.

double gsl _sf airy_Ai_scaled (double x, gsl_mode_t mode) Function
int gsl_sf_airy_Ai_scaled_e (double x, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute a scaled version of the Airy function S4(x)Ai(z). For x > 0
the scaling factor S, () is exp(+(2/3)2*/?), and is 1 for x < 0.

double gsl _sf airy Bi_scaled (double x, gsl_mode_t mode) Function
int gsl sf airy_Bi_scaled_e (double x, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute a scaled version of the Airy function Sg(z)Bi(x). For x > 0
the scaling factor Sp(z) is exp(—(2/3)z%/?), and is 1 for z < 0.

7.4.2 Derivatives of Airy Functions

double gsl_sf airy_Ai_deriv (double x, gsl_mode_t mode) Function
int gsl sf airy_Ai_deriv_e (double x, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the Airy function derivative Ai'(x) with an accuracy specified

by mode.
double gsl_sf airy_Bi_deriv (double x, gsl_mode_t mode) Function
int gsl sf airy_Bi_deriv_e (double x, gsl_mode_t mode, Function

gsl_sf_result * result)
These routines compute the Airy function derivative Bi'(x) with an accuracy specified

by mode.
double gsl _sf airy_Ai_deriv_scaled (double x, gsl_mode_t mode) Function
int gsl sf airy_Ai_deriv_scaled_e (double x, gsl_mode_t mode, Function

gsl_sf_result * result)
These routines compute the derivative of the scaled Airy function S, (x)Ai(z).

double gsl_sf airy Bi_deriv_scaled (double x, gsl_mode_t mode) Function
int gsl sf airy_Bi_deriv_scaled_e (double x, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the derivative of the scaled Airy function Sg(z)Bi(z).

7.4.3 Zeros of Airy Functions

double gsl sf airy zero_Ai (unsigned int s) Function
int gsl sf airy_zero_Ai_e (unsigned int s, gsl_sf_result * result) Function
These routines compute the location of the s-th zero of the Airy function Ai(x).
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double gsl_sf airy _zero_Bi (unsigned int s) Function
int gsl sf airy _zero_Bi_e (unsigned int s, gsl_sf_result * result) Function
These routines compute the location of the s-th zero of the Airy function Bi(x).

7.4.4 Zeros of Derivatives of Airy Functions

double gsl _sf airy_zero_Ai deriv (unsigned int s) Function
int gsl sf airy_zero_Ai deriv_e (unsigned int s, gsl_sf_result * Function
result)
These routines compute the location of the s-th zero of the Airy function derivative
Ai'(z).
double gsl_sf airy _zero_Bi_deriv (unsigned int s) Function
int gsl sf airy_zero_Bi_deriv_e (unsigned int s, gsl_sf_result * Function
result)
These routines compute the location of the s-th zero of the Airy function derivative
Bi'(z).

7.5 Bessel Functions

The routines described in this section compute the Cylindrical Bessel functions .J,(z),
Y, (z), Modified cylindrical Bessel functions I,,(x), K, (z), Spherical Bessel functions j;(x),
yi(x), and Modified Spherical Bessel functions i;(x), ki(x). For more information see
Abramowitz & Stegun, Chapters 9 and 10. The Bessel functions are defined in the header
file ‘gsl_sf_bessel.h’.

7.5.1 Regular Cylindrical Bessel Functions

double gsl_sf bessel_JO (double x) Function
int gsl sf bessel J0_e (double x, gsl_sf_result * result) Function
These routines compute the regular cylindrical Bessel function of zeroth order, Jy(x).

double gsl_sf bessel_J1 (double x) Function
int gsl sf bessel J1_e (double x, gsl_sf_result * result) Function
These routines compute the regular cylindrical Bessel function of first order, J;(z).

double gsl_sf bessel_Jn (int n, double x) Function
int gsl sf bessel_Jn_e (int n, double x, gsl_sf_result * result) Function
These routines compute the regular cylindrical Bessel function of order n, J,, ().

int gsl sf bessel_Jn_array (int nmin, int nmax, double x, double Function
result_arrayl|])
This routine computes the values of the regular cylindrical Bessel functions J,(z)
for n from nmin to nmax inclusive, storing the results in the array result_array. The
values are computed using recurrence relations, for efficiency, and therefore may differ
slightly from the exact values.
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7.5.2 Irregular Cylindrical Bessel Functions

double gsl_sf_bessel_ YO (double x) Function

int gsl sf bessel_Y0_e (double x, gsl_sf_result * result) Function
These routines compute the irregular cylindrical Bessel function of zeroth order, Yy (z),
for x > 0.

double gsl_sf_bessel_Y1 (double x) Function

int gsl sf bessel_Y1_e (double x, gsl_sf_result * result) Function
These routines compute the irregular cylindrical Bessel function of first order, Y;(z),
for x > 0.

double gsl_sf_bessel_Yn (int n,double x) Function

int gsl sf bessel_Yn_e (int n,double x, gsl_sf_result * result) Function
These routines compute the irregular cylindrical Bessel function of order n, Y,,(x), for
x> 0.

int gsl sf bessel_Yn_array (int nmin, int nmax, double x, Function

double result_array]|)
This routine computes the values of the irregular cylindrical Bessel functions Y, (z)
for n from nmin to nmax inclusive, storing the results in the array result_array. The
domain of the function is z > 0. The values are computed using recurrence relations,
for efficiency, and therefore may differ slightly from the exact values.

7.5.3 Regular Modified Cylindrical Bessel Functions

double gsl_sf bessel I0 (double x) Function
int gsl sf bessel I0_e (double x, gsl_sf_result * result) Function

These routines compute the regular modified cylindrical Bessel function of zeroth
order, Iy(x).

double gsl_sf bessel I1 (double x) Function

int gsl sf bessel I1_e (double x, gsl_sf_result * result) Function
These routines compute the regular modified cylindrical Bessel function of first order,
Il (.’L')

double gsl sf bessel In (int n, double x) Function

int gsl sf bessel_ In_e (int n, double x, gsl_sf_result * result) Function
These routines compute the regular modified cylindrical Bessel function of order n,
I,(x).

int gsl sf bessel In_array (int nmin, int nmax, double x, double Function

result_arrayl|])
This routine computes the values of the regular modified cylindrical Bessel functions
I,,(z) for n from nmin to nmax inclusive, storing the results in the array result_array.
The start of the range nmin must be positive or zero. The values are computed using
recurrence relations, for efficiency, and therefore may differ slightly from the exact
values.



Chapter 7: Special Functions 37

double gsl_sf bessel 10_scaled (double x) Function

int gsl_sf_bessel_I0_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled regular modified cylindrical Bessel function of
zeroth order exp(—|z|)Iy(z).

double gsl_sf bessel I1_scaled (double x) Function

int gsl sf bessel I1_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled regular modified cylindrical Bessel function of first
order exp(—|z|)I;(x).

double gsl_sf bessel In_scaled (int n, double x) Function
int gsl_sf bessel In_scaled_e (int n, double x, gsl_sf_result * Function
result)

These routines compute the scaled regular modified cylindrical Bessel function of
order n, exp(—|z|)L,(x)

int gsl sf bessel In_scaled_array (int nmin, int nmax, double x, Function
double result_array]|)
This routine computes the values of the scaled regular cylindrical Bessel functions
exp(—|z|)I,(x) for n from nmin to nmax inclusive, storing the results in the array
result_array. The start of the range nmin must be positive or zero. The values are
computed using recurrence relations, for efficiency, and therefore may differ slightly
from the exact values.

7.5.4 Irregular Modified Cylindrical Bessel Functions

double gsl_sf bessel KO (double x) Function

int gsl sf bessel KO0_e (double x, gsl_sf_result * result) Function
These routines compute the irregular modified cylindrical Bessel function of zeroth
order, Ky(x), for z > 0.

double gsl_sf bessel K1 (double x) Function

int gsl sf bessel K1_e (double x, gsl_sf_result * result) Function
These routines compute the irregular modified cylindrical Bessel function of first
order, K;(x), for x > 0.

double gsl_sf bessel Kn (int n, double x) Function

int gsl sf bessel_ Kn_e (int n, double x, gsl_sf_result * result) Function
These routines compute the irregular modified cylindrical Bessel function of order n,
K, (zx), for z > 0.

int gsl sf bessel Kn_array (int nmin, int nmax, double x, Function
double result_array]|)
This routine computes the values of the irregular modified cylindrical Bessel functions
K, (z) for n from nmin to nmax inclusive, storing the results in the array result_array.
The start of the range nmin must be positive or zero. The domain of the function
is x > 0. The values are computed using recurrence relations, for efficiency, and
therefore may differ slightly from the exact values.
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double gsl_sf bessel K0_scaled (double x) Function

int gsl_sf_bessel_KO0_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled irregular modified cylindrical Bessel function of
zeroth order exp(z)Ko(x) for = > 0.

double gsl_sf_bessel_K1_scaled (double x) Function

int gsl sf bessel K1 _scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled irregular modified cylindrical Bessel function of
first order exp(z)K;(x) for > 0.

double gsl_sf bessel Kn_scaled (int n, double x) Function
int gsl sf bessel_Kn_scaled_e (int n, double x, gsl_sf_result * Function
result)

These routines compute the scaled irregular modified cylindrical Bessel function of
order n, exp(z) K, (z), for x > 0.

int gsl_sf bessel Kn_scaled_array (int nmin, int nmax, double Function
x, double result_array|])
This routine computes the values of the scaled irregular cylindrical Bessel functions
exp(z)K,(z) for n from nmin to nmax inclusive, storing the results in the array
result_array. The start of the range nmin must be positive or zero. The domain
of the function is > 0. The values are computed using recurrence relations, for
efficiency, and therefore may differ slightly from the exact values.

7.5.5 Regular Spherical Bessel Functions

double gsl_sf_bessel_jO (double x) Function

int gsl sf bessel_jO_e (double x, gsl_sf_result * result) Function
These routines compute the regular spherical Bessel function of zeroth order, jo(z) =
sin(x)/z.

double gsl _sf bessel_jl (double x) Function

int gsl sf bessel_jl_e (double x, gsl_sf_result * result) Function

These routines compute the regular spherical Bessel function of first order, j;(x) =

(sin(x)/x — cos(x))/x.

double gsl_sf bessel_j2 (double x) Function
int gsl sf bessel j2_e (double x, gsl_sf_result * result) Function
These routines compute the regular spherical Bessel function of second order, j,(z) =

((3/2* — 1) sin(x) — 3cos(z)/x)/x.

double gsl_sf bessel_jl (int I, double x) Function

int gsl sf bessel_jl_e (int I, double x, gsl_sf_result * result) Function
These routines compute the regular spherical Bessel function of order I, j;(z), for
{>0and z > 0.
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int gsl sf bessel_jl_array (int Imax, double x, double Function
result_arrayl|])
This routine computes the values of the regular spherical Bessel functions j;(x) for
I from 0 to Imax inclusive for imax > 0 and x > 0, storing the results in the array
result_array. The values are computed using recurrence relations, for efficiency, and
therefore may differ slightly from the exact values.

int gsl_sf bessel_jl_steed_array (int Imax, double x, double * Function
jlx_array)
This routine uses Steed’s method to compute the values of the regular spherical Bessel
functions j;(x) for [ from 0 to Imax inclusive for lmax > 0 and x > 0, storing the
results in the array result_array. The Steed/Barnett algorithm is described in Comp.
Phys. Comm. 21, 297 (1981). Steed’s method is more stable than the recurrence
used in the other functions but is also slower.

7.5.6 Irregular Spherical Bessel Functions

double gsl_sf bessel_y0 (double x) Function

int gsl sf bessel_y0_e (double x, gsl_sf_result * result) Function
These routines compute the irregular spherical Bessel function of zeroth order, yo(z) =
—cos(z)/x.

double gsl_sf bessel_yl (double x) Function

int gsl_sf bessel_yl_e (double x, gsl_sf_result * result) Function
These routines compute the irregular spherical Bessel function of first order, y;(z) =
—(cos(x)/x + sin(z))/x.

double gsl_sf bessel_y2 (double x) Function

int gsl sf bessel_y2_e (double x, gsl_sf_result * result) Function

These routines compute the irregular spherical Bessel function of second order,
yo(z) = (=3/2? + 1/z) cos(x) — (3/x?) sin(x).

double gsl_sf bessel_yl (int I, double x) Function

int gsl sf bessel_yl_e (int I, double x, gsl_sf_result * result) Function
These routines compute the irregular spherical Bessel function of order I, y;(x), for
[>0.

int gsl sf bessel_yl_array (int Imax, double x, double Function

result_arrayl|])
This routine computes the values of the irregular spherical Bessel functions y;(x) for
[ from 0 to Imax inclusive for Imax > 0, storing the results in the array result_array.
The values are computed using recurrence relations, for efficiency, and therefore may
differ slightly from the exact values.
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7.5.7 Regular Modified Spherical Bessel Functions

The regular modified spherical Bessel functions i;(z) are related to the modified Bessel
functions of fractional order, i;(x) = \/7/(22)111/2(x)

double gsl_sf_bessel_i0_scaled (double x) Function

int gsl_sf_bessel_i0_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled regular modified spherical Bessel function of zeroth
order, exp(—|z|)ig(x).

double gsl_sf_bessel_il_scaled (double x) Function

int gsl sf bessel_il_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled regular modified spherical Bessel function of first
order, exp(—|z|)ii(x).

double gsl_sf bessel_i2_scaled (double x) Function

int gsl sf bessel_i2_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled regular modified spherical Bessel function of second
order, exp(—|z|)ia(z)

double gsl_sf bessel_il scaled (int I, double x) Function
int gsl sf bessel_il scaled_e (int I, double x, gsl_sf_result * Function
result)

These routines compute the scaled regular modified spherical Bessel function of order
I, exp(—|z|)ir(z)

int gsl_sf bessel il scaled_array (int Imax, double x, double Function
result_array]|)
This routine computes the values of the scaled regular modified cylindrical Bessel
functions exp(—|z|)i;(z) for | from 0 to Imax inclusive for Imax > 0, storing the
results in the array result_array. The values are computed using recurrence relations,
for efficiency, and therefore may differ slightly from the exact values.

7.5.8 Irregular Modified Spherical Bessel Functions

The irregular modified spherical Bessel functions k;(x) are related to the irregular mod-
ified Bessel functions of fractional order, ki(z) = /7/(22) K141 /2(x).

double gsl_sf bessel_k0_scaled (double x) Function

int gsl_sf bessel k0_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled irregular modified spherical Bessel function of
zeroth order, exp(x)ko(z), for z > 0.

double gsl_sf bessel k1 _scaled (double x) Function

int gsl sf bessel k1 _scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled irregular modified spherical Bessel function of first
order, exp(z)k;(x), for > 0.
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double gsl_sf bessel k2 _scaled (double x) Function

int gsl_sf bessel_k2_scaled_e (double x, gsl_sf_result * result) Function
These routines compute the scaled irregular modified spherical Bessel function of
second order, exp(x)kz(x), for z > 0.

double gsl_sf bessel_kl scaled (int I, double x) Function
int gsl_sf bessel kl scaled_e (int I, double x, gsl_sf_result * Function
result)

These routines compute the scaled irregular modified spherical Bessel function of
order I, exp(z)k,(z), for x > 0.

int gsl sf bessel kl _scaled_array (int Imax, double x, double Function
result_array]|)
This routine computes the values of the scaled irregular modified spherical Bessel
functions exp(x)k;(x) for [ from 0 to Imax inclusive for Imaz > 0 and = > 0, stor-
ing the results in the array result_array. The values are computed using recurrence
relations, for efficiency, and therefore may differ slightly from the exact values.

7.5.9 Regular Bessel Function - Fractional Order

double gsl_sf bessel_Jnu (double nu, double x) Function
int gsl sf bessel_Jnu_e (double nu, double x, gsl_sf_result * Function
result)
These routines compute the regular cylindrical Bessel function of fractional order nu,
J,(x).
int gsl_sf bessel_sequence_Jnu_e (double nu, gsl_mode_t mode, Function

size_t size, double v[])
This function computes the regular cylindrical Bessel function of fractional order v,
J,(x), evaluated at a series of = values. The array v of length size contains the x
values. They are assumed to be strictly ordered and positive. The array is over-
written with the values of J,(z;).

7.5.10 Irregular Bessel Functions - Fractional Order

double gsl_sf bessel_Ynu (double nu, double x) Function
int gsl_sf_bessel_Ynu_e (double nu, double x, gsl_sf_result * Function
result)
These routines compute the irregular cylindrical Bessel function of fractional order
nu, Y, (z).

7.5.11 Regular Modified Bessel Functions - Fractional Order
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double gsl_sf bessel_ Inu (double nu, double x) Function
int gsl sf bessel_ Inu_e (double nu, double x, gsl_sf_result * Function
result)

These routines compute the regular modified Bessel function of fractional order nu,
I,(z) for > 0, v > 0.

double gsl_sf bessel Inu_scaled (double nu, double x) Function
int gsl sf bessel Inu_scaled_e (double nu, double x, Function
gsl_sf_result * result)
These routines compute the scaled regular modified Bessel function of fractional order
nu, exp(—|z|)I,(x) for x > 0, v > 0.

7.5.12 Irregular Modified Bessel Functions - Fractional Order

double gsl_sf bessel_ Knu (double nu, double x) Function
int gsl sf bessel Knu_e (double nu, double x, gsl_sf_result * Function
result)

These routines compute the irregular modified Bessel function of fractional order nu,
K,(x) for z >0, v > 0.

double gsl_sf bessel_ InKnu (double nu, double x) Function
int gsl sf bessel InKnu_e (double nu, double x, gsl_sf_result * Function
result)

These routines compute the logarithm of the irregular modified Bessel function of
fractional order nu, In(K,(x)) for z > 0, v > 0.

double gsl_sf bessel Knu_scaled (double nu, double x) Function
int gsl_sf bessel Knu_scaled_e (double nu, double x, Function
gsl_sf_result * result)
These routines compute the scaled irregular modified Bessel function of fractional
order nu, exp(+|z|)K,(x) for z > 0, v > 0.

7.5.13 Zeros of Regular Bessel Functions

double gsl _sf_bessel zero_JO (unsigned int s) Function
int gsl sf bessel zero_J0_e (unsigned int s, gsl_sf_result * Function
result)
These routines compute the location of the s-th positive zero of the Bessel function
Jo(x).
double gsl _sf bessel_zero_J1 (unsigned int s) Function
int gsl sf bessel zero_J1_e (unsigned int s, gsl_sf_result * Function
result)

These routines compute the location of the s-th positive zero of the Bessel function

Ji(z).
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double gsl _sf_bessel_zero_Jnu (double nu, unsigned int s) Function
int gsl sf bessel_zero_Jnu_e (double nu, unsigned int s, Function
gsl_sf_result * result)
These routines compute the location of the s-th positive zero of the Bessel function
J,(x).
7.6 Clausen Functions

The Clausen function is defined by the following integral,

Cla(z) = — /0 " dtlog(2sin(t/2))

It is related to the dilogarithm by Cly(0) = ImLis(exp(if)). The Clausen functions are
declared in the header file ‘gsl_sf_clausen.h’.

double gsl_sf_clausen (double x) Function
int gsl sf clausen_e (double x, gsl_sf_result * result) Function
These routines compute the Clausen integral Cly(x).

7.7 Coulomb Functions

The Coulomb functions are declared in the header file ‘gsl_sf_coulomb.h’. Both bound
state and scattering solutions are available.

7.7.1 Normalized Hydrogenic Bound States

double gsl_sf hydrogenicR_1 (double Z, double r) Function
int gsl sf_hydrogenicR_1_e (double Z, double r, gsl_sf_result * Function
result)

These routines compute the lowest-order normalized hydrogenic bound state radial
wavefunction R, := 272/ Z exp(—Zr).

double gsl_sf hydrogenicR (int n, int I, double Z, double r) Function
int gsl sf hydrogenicR_e (int n, int I, double Z, double r, Function
gsl_sf_result * result)
These routines compute the n-th normalized hydrogenic bound state radial wavefunc-
tion,

2Z3/2 27 ! (’I’Z—l—l)‘ 20+1
Rn = 7 (n) W eXp(—ZT/n)Lnil71(2Z/n7a).

The normalization is chosen such that the wavefunction v is given by ¥(n,l,r) =
R.Yim.
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7.7.2 Coulomb Wave Functions

The Coulomb wave functions F(n,z), G1(n, z) are described in Abramowitz & Stegun,
Chapter 14. Because there can be a large dynamic range of values for these functions,
overflows are handled gracefully. If an overflow occurs, GSL_EOVRFLW is signalled and ex-
ponent(s) are returned through the modifiable parameters exp_F, exp-G. The full solution
can be reconstructed from the following relations,

Fi(n,x) = felkr] * exp(expr)
Gr(n,x) = gelkr] » exp(expe)

Fi(n,x) = feplkr] * exp(expr)
G (n,x) = geplky] * exp(expe)

int gsl_sf_coulomb_wave_FG_e (double eta, double x, double Function

L_F, int k, gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G,
gsl_sf_result * Gp, double * exp_F', double * exp_G)

This function computes the coulomb wave functions Fy(n,z), G_x(n,z) and their

derivatives with respect to x, F}(n,z) G} _,(n,x). The parameters are restricted to

L, L —k > —1/2, x > 0 and integer k. Note that L itself is not restricted to being

an integer. The results are stored in the parameters F, G for the function values and

Fp, Gp for the derivative values. If an overflow occurs, GSL_EQVRFLW is returned and

scaling exponents are stored in the modifiable parameters exp_F, exp_G.

int gsl sf coulomb_wave_F _array (double L_min, int kmax, Function
double eta, double x, double fc_array[], double * F_exponent)
This function computes the function Fy (eta, z) for L = Lmin ... Lmin+kmax storing
the results in fc_array. In the case of overflow the exponent is stored in F_exponent.

int gsl_sf coulomb_wave FG_array (double L_min, int kmax, Function
double eta, double x, double fc_array[], double gc.array||, double *
F_exponent, double * G_exponent)
This function computes the functions Fy(n,z), Gp(n,z) for L = Lmin ... Lmin +
kmax storing the results in fc_array and gc_array. In the case of overflow the expo-
nents are stored in F_exponent and G_exponent.

int gsl_sf_ coulomb_wave FGp_array (double L_min, int kmax, Function
double eta, double x, double fc_array[|, double fcp_array[|, double
ge-array[|, double gep-array[], double * F_exponent, double * G_exponent)
This function computes the functions Fp(n,z), Gr(n,z) and their derivatives
F;(n,z), G (n,xz) for L = Lmin...Lmin + kmaz storing the results in fc_array,
ge_array, fcp_array and gep_array. In the case of overflow the exponents are stored
in F_exponent and G_exponent.

int gsl_sf coulomb_wave_sphF _array (double L_min, int kmax, Function
double eta, double x, double fc_array[], double F_exponent|])
This function computes the Coulomb wave function divided by the argument
Fr(n,z)/x for L = Lmin...Lmin + kmaz, storing the results in fc_array. In the
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case of overflow the exponent is stored in F_exponent. This function reduces to
spherical Bessel functions in the limit n — 0.

7.7.3 Coulomb Wave Function Normalization Constant

The Coulomb wave function normalization constant is defined in Abramowitz 14.1.7.

int gsl sf coulomb_CL_e (double L, double eta, gsl_sf_result * Function
result)
This function computes the Coulomb wave function normalization constant C,(n) for
L>-1.
int gsl_sf coulomb_CL_array (double Lmin, int kmax, double Function

eta, double cl[])
This function computes the coulomb wave function normalization constant Cf,(n) for
L = Lmin...Lmin+ kmax, Lmin > —1.

7.8 Coupling Coefficients

The Wigner 3-j, 6-j and 9-j symbols give the coupling coefficients for combined angular
momentum vectors. Since the arguments of the standard coupling coefficient functions are
integer or half-integer, the arguments of the following functions are, by convention, integers
equal to twice the actual spin value. For information on the 3-j coefficients see Abramowitz
& Stegun, Section 27.9. The functions described in this section are declared in the header
file ‘gsl_sf_coupling.h’.

7.8.1 3-j Symbols

double gsl_sf coupling_3j (int two_ja, int two_jb, int two_jc, int Function
two_ma, int two_mb, int two_mc)
int gsl_sf coupling_3j_e (int two_ja, int two_jb, int two_jc, int Function

two_ma, int two_mb, int two_mc, gsl_sf_result * result)
These routines compute the Wigner 3-j coeflicient,

Jja jb  je
ma mb mec

where the arguments are given in half-integer units, ja = two_ja/2, ma = two_ma/2,
ete.

7.8.2 6-j Symbols

double gsl_sf coupling_6j (int two_ja, int two_jb, int two_jc, int Function
two_jd, int two_je, int two_jf)
int gsl_sf coupling 6j_e (int two_ja, int two_jb, int two_jc, int Function

two_jd, int two_je, int two_jf, gsl_sf_result * result)
These routines compute the Wigner 6-j coefficient,
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{ja Jb  je }

jd je jf

where the arguments are given in half-integer units, ja = two_ja/2, ma = two_ma/2,
etc.

7.8.3 9-j Symbols

double gsl_sf _coupling 9j (int two_ja, int two_jb, int two_jc, int Function
two_jd, int two_je, int two_jf, int two.jg, int two_jh, int two_ji)
int gsl_sf coupling 9j_e (int two_ja, int two_jb, int two_jc, int Function

two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji,
gsl_sf_result * result)
These routines compute the Wigner 9-j coefficient,

ja jb  jc
Jd je jf
Jg Jjh ji

where the arguments are given in half-integer units, ja = two_ja/2, ma = two_ma/2,
etc.

7.9 Dawson Function

The Dawson integral is defined by exp(—z?) [y dtexp(t?). A table of Dawson’s integral
can be found in Abramowitz & Stegun, Table 7.5. The Dawson functions are declared in
the header file ‘gsl_sf_dawson.h’.

double gsl_sf dawson (double x) Function
int gsl sf dawson_e (double x, gsl_sf_result * result) Function
These routines compute the value of Dawson’s integral for x.

7.10 Debye Functions

The Debye functions are defined by the integral D, (z) = n/z" [ dt(t"/(e" — 1)). For
further information see Abramowitz & Stegun, Section 27.1. The Debye functions are
declared in the header file ‘gsl_sf_debye.h’.

double gsl sf_debye_1 (double x) Function
int gsl sf_ debye_1_e (double x, gsl_sf_result * result) Function
These routines compute the first-order Debye function D; (z) = (1/x) [y dt(t/(e"—1)).

double gsl _sf debye_2 (double x) Function
int gsl sf debye_2_e (double x, gsl_sf_result * result) Function
These routines compute the second-order Debye function Ds(z) =

(2/2%) Jy dit(*/(e’ = 1)).
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double gsl_sf debye_3 (double x) Function
int gsl sf_ debye_3_e (double x, gsl_sf_result * result) Function
These routines compute the third-order Debye function Ds(z) = (3/z%) [ dt(t*/(e* —

1)).

double gsl _sf debye_4 (double x) Function
int gsl sf debye_4_e (double x, gsl_sf_result * result) Function
These routines compute the fourth-order Debye function D,(z) = (4/2%) [ dt(t*/(e'—

1)).

7.11 Dilogarithm

The functions described in this section are declared in the header file ‘gs1_sf_dilog.h’.

7.11.1 Real Argument

double gsl_sf dilog (double x) Function
int gsl sf dilog_e (double x, gsl_sf_result * result) Function
These routines compute the dilogarithm for a real argument. In Lewin’s notation this
is Liy(x), the real part of the dilogarithm of a real z. It is defined by the integral
representation Lis(z) = —Re [ dslog(1 — s)/s. Note that Im(Liy(z)) = 0 for z < 1,
and —m log(x) for z > 1.

7.11.2 Complex Argument

int gsl_sf complex_dilog_e (double r, double theta, Function
gsl_sf_result * result_re, gsl_sf_result * result_im)
This function computes the full complex-valued dilogarithm for the complex argument
z = rexp(if). The real and imaginary parts of the result are returned in result_re,
result_im.

7.12 Elementary Operations

The following functions allow for the propagation of errors when combining quantities
by multiplication. The functions are declared in the header file ‘gsl_sf_elementary.h’.

int gsl_sf_ multiply_e (double x, double y, gsl_sf_result * result) Function
This function multiplies x and y storing the product and its associated error in result.

int gsl sf_ multiply_err_e (double x, double dx, double y, double Function
dy, gsl_sf_result * result)
This function multiplies x and y with associated absolute errors dx and dy. The
product zy + xy\/(dz/x)2? + (dy/y)? is stored in result.
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7.13 Elliptic Integrals

The functions described in this section are declared in the header file ‘gs1_sf_ellint.h’.

7.13.1 Definition of Legendre Forms
The Legendre forms of elliptic integrals F(¢, k), E(¢, k) and P(¢, k,n) are defined by,
$
F(o, k) = / dt

1
o /(1 - k2sin?())
¢
E(6, k) :/0 dtr/(1 — k2 sin® (1))
1
1 +nsin®(t))y/1 — k2sin’(t)

The complete Legendre forms are denoted by K(k) = F(n/2,k) and E(k) = E(n/2,k).
Further information on the Legendre forms of elliptic integrals can be found in Abramowitz
& Stegun, Chapter 17. The notation used here is based on Carlson, Numerische Mathematik
33 (1979) 1 and differs slightly from that used by Abramowitz & Stegun.

P(¢,k,n):/0¢dt(

7.13.2 Definition of Carlson Forms

The Carlson symmetric forms of elliptical integrals RC(z,y), RD(z,y,z), RF(z,y,2)
and RJ(z,y,z,p) are defined by,

RC(z,y) = 1/2 /OOO dt(t +x) 2t +y)*
RD(z,y,z) =3/2 /000 dt(t + )2t +y) TR+ 2) 732
RF(z,y,2) = 1/2 /OOO dt(t + )2t +y) V(4 2) 72

RI(@y,2p) = 3/2 [ dt(t+2) 20+ ) 20+ 2) )
0
7.13.3 Legendre Form of Complete Elliptic Integrals

double gsl_sf ellint_Kcomp (double k, gsl_mode_t mode) Function
int gsl sf ellint_Kcomp_e (double k, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the complete elliptic integral K (k) to the accuracy specified
by the mode variable mode.

double gsl_sf ellint_Ecomp (double k, gsl_mode_t mode) Function
int gsl sf ellint_Ecomp_e (double k, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the complete elliptic integral E(k) to the accuracy specified
by the mode variable mode.
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7.13.4 Legendre Form of Incomplete Elliptic Integrals

double gsl_sf ellint_F (double phi, double k, gsl_mode_t mode) Function
int gsl sf ellint_F_e (double phi, double k, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the incomplete elliptic integral F(¢, k) to the accuracy spec-
ified by the mode variable mode.

double gsl_sf_ellint_E (double phi, double k, gsl_mode_t mode) Function
int gsl_sf_ellint_E_e (double phi, double k, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the incomplete elliptic integral E(¢, k) to the accuracy spec-
ified by the mode variable mode.

double gsl_sf ellint_P (double phi, double k, double n, gsl_mode_t Function
mode)
int gsl_sf ellint_P_e (double phi, double k, double n, gsl_mode_t Function

mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral P(¢,k,n) to the accuracy
specified by the mode variable mode.

double gsl_sf_ellint_D (double phi, double k, double n, gsl_mode_t Function
mode)
int gsl sf ellint_D_e (double phi, double k, double n, gsl_mode_t Function

mode, gsl_sf_result * result)
These functions compute the incomplete elliptic integral D(¢, k,n) which is defined
through the Carlson form RD(x,y, z) by the following relation,

D(¢,k,n) = RD(1 —sin®*(¢),1 — k*sin®(¢), 1).
7.13.5 Carlson Forms

double gsl_sf_ellint_ RC (double x, double y, gsl_mode_t mode) Function
int gsl sf ellint_ RC_e (double x, double y, gsl_mode_t mode, Function
gsl_sf_result * result)
These routines compute the incomplete elliptic integral RC(z,y) to the accuracy
specified by the mode variable mode.

double gsl_sf ellint_RD (double x, double y, double z, gsl_mode_t Function
mode)
int gsl sf ellint_RD_e (double x, double y, double z, gsl_mode_t Function

mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral RD(x,y, z) to the accuracy
specified by the mode variable mode.
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double gsl_sf_ellint_ RF (double x, double y, double z, gsl_mode_t Function
mode)
int gsl sf ellint_RF _e (double x, double y, double z, gsl_mode_t Function

mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral RF(z,vy, z) to the accuracy
specified by the mode variable mode.

double gsl_sf ellint_RJ (double x, double y, double z, double p, Function
gsl_mode_t mode)
int gsl sf ellint_RJ_e (double x, double y, double z, double p, Function

gsl_mode_t mode, gsl_sf_result * result)
These routines compute the incomplete elliptic integral RJ(z,y, z, p) to the accuracy
specified by the mode variable mode.

7.14 Elliptic Functions (Jacobi)

The Jacobian Elliptic functions are defined in Abramowitz & Stegun, Chapter 16. The
functions are declared in the header file ‘gsl_sf_elljac.h’.

int gsl_sf elljac_e (double u, double m, double * sn, double * cn, Function
double * dn)
This function computes the Jacobian elliptic functions sn(u|m), en(ulm), dn(u|m) by
descending Landen transformations.

7.15 Error Functions

The error function is described in Abramowitz & Stegun, Chapter 7. The functions in
this section are declared in the header file ‘gsl_sf_erf.h’.

7.15.1 Error Function

double gsl_sf_erf (double x) Function
int gsl sf erf_e (double x, gsl_sf_result * result) Function
These routines compute the error function erf(z) = (2/y/) [y dt exp(—t?).

7.15.2 Complementary Error Function

double gsl_sf_erfc (double x) Function
int gsl sf erfc_e (double x, gsl_sf_result * result) Function
These routines compute the complementary error function erfc(z) = 1 — erf(z) =

(2/v/m) [ exp(=t?).
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7.15.3 Log Complementary Error Function

double gsl_sf log_erfc (double x) Function

int gsl sf log_erfc_e (double x, gsl_sf_result * result) Function
These routines compute the logarithm of the complementary error function
log(erfc(x)).

7.15.4 Probability functions

The probability functions for the Normal or Gaussian distribution are described in
Abramowitz & Stegun, Section 26.2.

double gsl sf erf Z (double x) Function
int gsl sf erf Z_e (double x, gsl_sf_result * result) Function
These routines compute the Gaussian probability function Z(x) =

(1/(2m)) exp(—a?/2).

double gsl _sf erf Q (double x) Function
int gsl sf erf Q_e (double x, gsl_sf_result * result) Function
These routines compute the upper tail of the Gaussian probability function Q(x) =

(1/(2m)) [~ dtexp(—t*/2).
7.16 Exponential Functions

The functions described in this section are declared in the header file ‘gsl_sf_exp.h’.

7.16.1 Exponential Function

double gsl _sf exp (double x) Function

int gsl sf_exp_e (double x, gsl_sf_result * result) Function
These routines provide an exponential function exp(z) using GSL semantics and error
checking,.

int gsl sf exp_el0_e (double x, gsl_sf_result_elO * result) Function

This function computes the exponential exp(x) using the gsl_sf_result_el0 type
to return a result with extended range. This function may be useful if the value of
exp(z) would overflow the numeric range of double.

double gsl sf exp_mult (double x, double y) Function
int gsl sf exp_mult_e (double x, double y, gsl_sf_result * result) Function

These routines exponentiate x and multiply by the factor y to return the product
yexp().

int gsl sf exp_mult_el0_e (const double x, const double y, Function
gsl_sf_result_el0 * result)
This function computes the product yexp(z) using the gsl_sf_result_el0 type to
return a result with extended numeric range.
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7.16.2 Relative Exponential Functions

double gsl sf_expml (double x) Function

int gsl sf_ expml_e (double x, gsl_sf_result * result) Function
These routines compute the quantity exp(x) — 1 using an algorithm that is accurate
for small z.

double gsl_sf exprel (double x) Function

int gsl sf exprel_e (double x, gsl_sf_result * result) Function

These routines compute the quantity (exp(z) — 1)/x using an algorithm that is accu-
rate for small z. For small x the algorithm is based on the expansion (exp(z)—1)/z =
14+x/2+2%/(2%3)+2%/(2%3%4)+....

double gsl_sf exprel 2 (double x) Function

int gsl sf exprel_2_e (double x, gsl_sf_result * result) Function
These routines compute the quantity 2(exp(z) — 1 — x)/z? using an algorithm that is
accurate for small x. For small  the algorithm is based on the expansion 2(exp(z) —
1—x)/22=1+2/3+22/(3x4) +23/(3x4%x5)+....

double gsl _sf exprel n (int n, double x) Function
int gsl sf exprel_.n_e (int n, double x, gsl_sf_result * result) Function
These routines compute the N-relative exponential, which is the n-th generalization
of the functions gsl_sf_exprel and gsl_sf_exprel2. The N-relative exponential is
given by,

exprel () = N!/2™ <exp(x) — Z_: xk/k'>
=1+x/(N+1)+2*/(N+1)(N+2)+...

= 1F1(1,1 +N,l’)

7.16.3 Exponentiation With Error Estimate

int gsl sf exp_err_e (double x, double dx, gsl_sf_result * result) Function
This function exponentiates x with an associated absolute error dx.

int gsl_sf_exp_err_el0_e (double x, double dx, gsl_sf_result_el0 Function
* result)
This functions exponentiate a quantity x with an associated absolute error dx using
the gsl_sf_result_el0 type to return a result with extended range.

int gsl sf exp_mult_err_e (double x, double dx, double y, double Function
dy, gsl_sf_result * result)
This routine computes the product yexp(x) for the quantities x, y with associated
absolute errors dx, dy.
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int gsl sf exp_mult_err_el0_e (double x, double dx, double y, Function
double dy, gsl_sf_result_el0 * result)
This routine computes the product yexp(x) for the quantities x, y with associated
absolute errors dx, dy using the gsl_sf_result_el0 type to return a result with
extended range.

7.17 Exponential Integrals

Information on the exponential integrals can be found in Abramowitz & Stegun, Chapter
5. These functions are declared in the header file ‘gsl_sf_expint.h’.

7.17.1 Exponential Integral

double gsl_sf expint_E1 (double x) Function
int gsl sf_expint_E1_e (double x, gsl_sf_result * result) Function
These routines compute the exponential integral F;(x),

E,(z) :== Re /loo dt exp(—uxt)/t.

double gsl _sf expint_E2 (double x) Function
int gsl sf expint_E2_e (double x, gsl_sf_result * result) Function
These routines compute the second-order exponential integral Fy(x),

Es(x) :=Re /100 dt exp(—xt) /t>.
7.17.2 Ei(x)

double gsl _sf expint_Ei (double x) Function

int gsl sf expint_Ei_e (double x, gsl_sf_result * result) Function
These routines compute the exponential integral E;(z),
Ei(z) == —PV(| dtexp(—t)/t)

where PV denotes the principal value of the integral.

7.17.3 Hyperbolic Integrals

double gsl_sf Shi (double x) Function
int gsl sf Shi_e (double x, gsl_sf_result * result) Function
These routines compute the integral Shi(z) = [ dtsinh(¢)/t.

double gsl_sf_Chi (double x) Function

int gsl sf Chi_e (double x, gsl_sf_result * result) Function
These routines compute the integral Chi(z) := Re[yp +log(z) + [, dt(cosh[t] —1)/t],
where g is the Euler constant (available as the macro M_EULER).
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7.17.4 Ei_3(x)

double gsl_sf expint_3 (double x) Function
int gsl sf expint_3_e (double x, gsl_sf_result * result) Function
These routines compute the exponential integral Eis(z) = [ dt exp(—t?) for z > 0.

7.17.5 Trigonometric Integrals

double gsl sf Si (const double x) Function
int gsl sf Si_e (double x, gsl_sf_result * result) Function
These routines compute the Sine integral Si(z) = [ dtsin(t)/t.

double gsl sf_Ci (const double x) Function
int gsl_sf_Ci_e (double x, gsl_sf_result * result) Function
These routines compute the Cosine integral Ci(z) = — [ dt cos(t) /t for = > 0.

7.17.6 Arctangent Integral

double gsl_sf atanint (double x) Function
int gsl_sf_atanint_e (double x, gsl_sf_result * result) Function
These routines compute the Arctangent integral AtanInt(z) = f; dtarctan(t)/t.

7.18 Fermi-Dirac Function

The functions described in this section are declared in the header file
‘gsl_sf_fermi_dirac.h’.

7.18.1 Complete Fermi-Dirac Integrals

The complete Fermi-Dirac integral F;(z) is given by,

1 > !
Fy(x) = L(j+1) /0 (exp(t —x) +1)

double gsl_sf fermi dirac_m1 (double x) Function

int gsl sf fermi dirac_ml_e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral with an index of —1. This
integral is given by F_(z) = e”/(1 + e").

double gsl_sf fermi dirac_0 (double x) Function

int gsl sf fermi_dirac_0_e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral with an index of 0. This
integral is given by Fy(z) = In(1 + e*).
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double gsl_sf fermi _dirac_1 (double x) Function
int gsl_sf fermi_dirac_1_e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral with an index of 1, F(z) =

Jo~ dt(t/(exp(t — x) + 1)).

double gsl_sf fermi _dirac_2 (double x) Function
int gsl sf fermi dirac_2_e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral with an index of 2, Fy(z) =

(1/2) fy~ dt(t?/(exp(t — x) + 1)).

double gsl_sf fermi_dirac_int (int j, double x) Function
int gsl sf fermi _dirac_int_e (int j, double x, gsl_sf_result * Function
result)

These routines compute the complete Fermi-Dirac integral with an integer index of
J Fi(x) = (1/T( +1)) [~ dt(t’/(exp(t — x) + 1)).

double gsl_sf fermi_dirac_mbhalf (double x) Function
int gsl_sf fermi_dirac_mhalf_e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral F_;5(x).

double gsl_sf fermi_dirac_half (double x) Function
int gsl sf fermi_dirac_half e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral F} »(z).

double gsl_sf fermi_dirac_3half (double x) Function
int gsl_sf fermi_dirac_3half_e (double x, gsl_sf_result * result) Function
These routines compute the complete Fermi-Dirac integral Fjo(z).

7.18.2 Incomplete Fermi-Dirac Integrals

The incomplete Fermi-Dirac integral F}(x,b) is given by,

1 > t
Fi(z,b) :== T(j+1) /b (exp(t —z)+1)

double gsl _sf fermi dirac_inc_0 (double x, double b) Function
int gsl sf fermi_dirac_inc_0_e (double x, double b, Function
gsl_sf_result * result)
These routines compute the incomplete Fermi-Dirac integral with an index of zero,
Fo(z,b) =In(1+€77) — (b —xz).
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7.19 Gamma Function

The Gamma function is defined by the following integral,

I(z) = /0 Lt exp(—1)

Further information on the Gamma function can be found in Abramowitz & Stegun, Chapter
6. The functions described in this section are declared in the header file ‘gsl_sf_gamma.h’.

double gsl sf gamma (double x) Function

int gsl sf gamma_e (double x, gsl_sf_result * result) Function
These routines compute the Gamma function I'(z), subject to x not being a negative
integer. The function is computed using the real Lanczos method. The maximum
value of z such that I'(x) is not considered an overflow is given by the macro GSL_
SF_GAMMA_XMAX and is 171.0.

double gsl_sf Ingamma (double x) Function
int gsl sf Ingamma_e (double x, gsl_sf_result * result) Function
These routines compute the logarithm of the Gamma function, log(T'(x)), subject to
x not a being negative integer. For x < 0 the real part of log(I'(z)) is returned, which
is equivalent to log(|I'(z)]). The function is computed using the real Lanczos method.

int gsl sf Ingamma_sgn_e (double x, gsl_sf_result * result_lg, Function
double * sgn)
This routine computes the sign of the gamma function and the logarithm its magni-
tude, subject to x not being a negative integer. The function is computed using the
real Lanczos method. The value of the gamma function can be reconstructed using
the relation I'(z) = sgn * exp(resultlg).

double gsl_sf_ gammastar (double x) Function

int gsl sf gammastar_e (double x, gsl_sf_result * result) Function
These routines compute the regulated Gamma Function I'*(z) for > 0. The regu-
lated gamma function is given by,

I (2) = T(@)/(v272= 12 exp(~2))
1
= <1+12m+...> for x — oo
and is a useful suggestion of Temme.

double gsl _sf_ gammainv (double x) Function

int gsl sf gammainv_e (double x, gsl_sf_result * result) Function
These routines compute the reciprocal of the gamma function, 1/T'(z) using the real
Lanczos method.

int gsl_sf Ingamma_complex_e (double zr, double zi, Function
gsl_sf_result * Inr, gsl_sf_result * arg)
This routine computes log(I'(z)) for complex z = z,+iz; and z not a negative integer,
using the complex Lanczos method. The returned parameters are Inr = log |I'(z)| and
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arg = arg(I'(z)) in (—m,n]. Note that the phase part (arg) is not well-determined
when |z| is very large, due to inevitable roundoff in restricting to (—m,7|. This will
result in a GSL_ELOSS error when it occurs. The absolute value part (Inr), however,
never suffers from loss of precision.

double gsl_sf taylorcoeff (int n, double x) Function
int gsl_sf taylorcoeff_e (int n, double x, gsl_sf_result * result) Function
These routines compute the Taylor coefficient 2™ /n! for z > 0, n > 0.

double gsl _sf fact (unsigned int n) Function

int gsl sf fact_e (unsigned int n, gsl_sf_result * result) Function
These routines compute the factorial n!. The factorial is related to the Gamma
function by n! =T'(n + 1).

double gsl_sf doublefact (unsigned int n) Function

int gsl_sf doublefact_e (unsigned int n, gsl_sf_result * result) Function
These routines compute the double factorial n!! = n(n —2)(n —4) .. ..

double gsl_sf Infact (unsigned int n) Function

int gsl_sf Infact_e (unsigned int n, gsl_sf_result * result) Function

These routines compute the logarithm of the factorial of n, log(n!). The algorithm is
faster than computing In(I'(n 4 1)) via gsl_sf_lngamma for n < 170, but defers for

larger n.
double gsl_sf Indoublefact (unsigned int n) Function
int gsl_sf Indoublefact_e (unsigned int n, gsl_sf_result * result) Function

These routines compute the logarithm of the double factorial of n, log(n!!).

double gsl _sf choose (unsigned int n, unsigned int m) Function
int gsl sf choose_e (unsigned int n, unsigned int m, Function
gsl_sf_result * result)
These routines compute the combinatorial factor n choose m = n!/(m!(n — m)!)

double gsl _sf Inchoose (unsigned int n, unsigned int m) Function
int gsl sf Inchoose_e (unsigned int n, unsigned int m, Function
gsl_sf_result * result)
These routines compute the logarithm of n choose m. This is equivalent to the sum

log(n!) — log(m!) —log((n —m)!).

double gsl _sf_poch (double a, double x) Function
int gsl sf poch_e (double a, double x, gsl_sf_result * result) Function
These routines compute the Pochhammer symbol (a), := I'(a + z)/I'(z), subject to
a and a + x not being negative integers. The Pochhammer symbol is also known as
the Apell symbol.
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double gsl_sf Inpoch (double a, double x) Function

int gsl sf Inpoch_e (double a, double x, gsl_sf_result * result) Function
These routines compute the logarithm of the Pochhammer symbol,
log((a),) =log(I'(a + z)/I'(a)) for a > 0, a + = > 0.

int gsl sf Inpoch_sgn_e (double a, double x, gsl_sf_result * Function
result, double * sgn)
These routines compute the sign of the Pochhammer symbol and the logarithm of its
magnitude. The computed parameters are result = log(|(a),|) and sgn = sgn((a),)
where (a), :=T'(a + z)/T'(a), subject to a, a + x not being negative integers.

double gsl_sf_pochrel (double a, double x) Function
int gsl_sf pochrel_e (double a, double x, gsl_sf_result * result) Function
These routines compute the relative Pochhammer symbol ((a,z)—1)/x where (a,z) =

(a), :=T(a+z)/T(a).

double gsl sf gamma_inc_Q (double a, double x) Function
int gsl sf gamma_inc_QQ_e (double a, double x, gsl_sf_result * Function
result)

These routines compute the normalized incomplete Gamma Function
Q(a,x) =1/T(a) [° dtte=V exp(—t) for a > 0, z > 0.

double gsl sf_gamma_inc_P (double a, double x) Function
int gsl sf gamma_inc_P_e (double a, double x, gsl_sf_result * Function
result)

These routines compute the complementary normalized incomplete Gamma Function
P(a,z) =1/T(a) [y dtt®Y exp(—t) for a > 0, z > 0.

Note that Abramowitz & Stegun call P(a, z) the incomplete gamma function (section

6.5).
double gsl_sf_beta (double a, double b) Function
int gsl sf beta_e (double a, double b, gsl_sf_result * result) Function
These routines compute the Beta Function, B(a,b) = I'(a)['(b)/T'(a + b) for a > 0,
b> 0.
double gsl_sf Inbeta (double a, double b) Function
int gsl sf Inbeta_e (double a, double b, gsl_sf_result * result) Function
These routines compute the logarithm of the Beta Function, log(B(a,b)) for a > 0,
b> 0.
double gsl_sf beta_inc (double a, double b, double x) Function
int gsl sf beta_inc_e (double a, double b, double x, Function

gsl_sf_result * result)
These routines compute the normalize incomplete Beta function B,(a,b)/B(a,b) for
a>0,b>0,and 0 <z < 1.
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7.20 Gegenbauer Functions

The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where
they are known as Ultraspherical polynomials. The functions described in this section are
declared in the header file ‘gsl_sf_gegenbauer.h’.

double gsl _sf gegenpoly_1 (double lambda, double x) Function

double gsl _sf gegenpoly_2 (double lambda, double x) Function

double gsl_sf gegenpoly_3 (double lambda, double x) Function

int gsl sf gegenpoly_1_e (double lambda, double x, Function
gsl_sf_result * result)

int gsl_sf gegenpoly_2_e (double lambda, double x, Function
gsl_sf_result * result)

int gsl sf gegenpoly_3_e (double lambda, double x, Function

gsl_sf_result * result)
These functions evaluate the Gegenbauer polynomials CM (z) using explicit represen-
tations for n = 1,2, 3.

double gsl_sf gegenpoly_n (int n, double lambda, double x) Function
int gsl sf gegenpoly_n_e (int n, double lambda, double x, Function
gsl_sf_result * result)
These functions evaluate the Gegenbauer polynomial CM)(z) for a specific value of n,
lambda, x subject to A > —1/2, n > 0.

int gsl sf gegenpoly_array (int nmax, double lambda, double x, Function
double result_array]|)
This function computes an array of Gegenbauer polynomials CWM(x) for
n=0,1,2,...,nmax, subject to A > —1/2, nmax > 0.

7.21 Hypergeometric Functions

Hypergeometric functions are described in Abramowitz & Stegun, Chapters 13 and 15.
These functions are declared in the header file ‘gsl_sf_hyperg.h’.

double gsl_sf hyperg OF1 (double ¢, double x) Function
int gsl sf hyperg OF1_e (double ¢, double x, gsl_sf_result * Function
result)

These routines compute the hypergeometric function (F;(c, x).

double gsl _sf hyperg 1F1_int (int m, int n, double x) Function
int gsl sf hyperg 1F1_int_e (int m, int n, double x, Function
gsl_sf_result * result)
These routines compute the confluent hypergeometric function |Fj(m,n,z) =
M (m,n,z) for integer parameters m, n.
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double gsl _sf hyperg 1F1 (double a, double b, double x) Function
int gsl sf_ hyperg_1F1_e (double a, double b, double x, Function
gsl_sf_result * result)
These routines compute the confluent hypergeometric function ;Fi(a,b,z) =
M (a,b,z) for general parameters a, b.

double gsl _sf hyperg U_int (int m, int n, double x) Function
int gsl sf_ hyperg U_int_e (int m, int n, double x, Function
gsl_sf_result * result)
These routines compute the confluent hypergeometric function U(m,n,x) for integer
parameters m, n.

int gsl_sf_hyperg_U_int_el0_e (int m, int n, double x, Function
gsl_sf_result_el0 * result)
This routine computes the confluent hypergeometric function U(m,n,z) for integer
parameters m, n using the gsl_sf_result_el0 type to return a result with extended

range.
double gsl_sf hyperg U (double a, double b, double x) Function
int gsl sf hyperg U _e (double a, double b, double x) Function

These routines compute the confluent hypergeometric function U(a, b, ).

int gsl sf_ hyperg U_el0_e (double a, double b, double x, Function
gsl_sf_result_el0 * result)
This routine computes the confluent hypergeometric function U(a,b,z) using the
gsl_sf_result_el0 type to return a result with extended range.

double gsl_sf_hyperg 2F1 (double a, double b, double ¢, double Function
x)
int gsl sf_ hyperg 2F1_e (double a, double b, double c, double x, Function

gsl_sf_result * result)
These routines compute the Gauss hypergeometric function o F}(a, b, ¢, x) for |z| < 1.

If the arguments (a, b, ¢, z) are too close to a singularity then the function can return
the error code GSL_EMAXITER when the series approximation converges too slowly.
This occurs in the region of x = 1, ¢ — a — b = m for integer m.

double gsl _sf hyperg 2F1_conj (double aR, double al, double c, Function
double x)
int gsl sf hyperg 2F1 _conj_e (double aR, double al, double c, Function

double x, gsl_sf_result * result)
These routines compute the Gauss hypergeometric function » Fy (ag+iar;, aR—ial, ¢, )
with complex parameters for |z| < 1. exceptions:
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double gsl_sf hyperg 2F1 _renorm (double a, double b, double c, Function
double x)
int gsl sf_hyperg 2F1 _renorm_e (double a, double b, double c, Function

double x, gsl_sf_result * result)
These routines compute the renormalized Gauss hypergeometric function
2Fi(a,b,c,x)/I(c) for |z| < 1.

double gsl sf hyperg 2F1_conj_renorm (double aR, double al, Function
double ¢, double x)
int gsl sf_ hyperg 2F1_conj_renorm_e (double aR, double al, Function

double ¢, double x, gsl_sf_result * result)
These routines compute the renormalized Gauss hypergeometric function oF;(ar +
iar,ag —iag,c,x)/T(c) for |z| < 1.

double gsl sf hyperg 2F0 (double a, double b, double x) Function
int gsl sf_hyperg 2F0_e (double a, double b, double x, Function
gsl_sf_result * result)
These routines compute the hypergeometric function o F(a, b, x). The series represen-
tation is a divergent hypergeometric series. However, for z < 0 we have ,Fy(a, b, z) =

(—=1/z)*U(a,14+a—0b,—1/x)
7.22 Laguerre Functions
The Laguerre polynomials are defined in terms of confluent hypergeometric functions

as L2 (z) = ((a+ 1),/n!)1Fi(—n,a + 1,z). These functions are declared in the header file
‘gsl_sf_laguerre.h’.

double gsl_sf laguerre_1 (double a, double x) Function

double gsl_sf laguerre_2 (double a, double x) Function

double gsl_sf_laguerre_3 (double a, double x) Function

int gsl sf laguerre_1_e (double a, double x, gsl_sf_result * Function
result)

int gsl sf laguerre_2_e (double a, double x, gsl_sf_result * Function
result)

int gsl_sf laguerre_3_e (double a, double x, gsl_sf_result * Function
result)

These routines evaluate the generalized Laguerre polynomials L{(z), L§(x), L3(z)
using explicit representations.

double gsl _sf laguerre_n (const int n, const double a, const Function
double x)

int gsl sf laguerre_n_e (int n, double a, double x, gsl_sf_result Function
* result)

Thse routines evaluate the generalized Laguerre polynomials L?(z) for a > —1, n > 0.
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7.23 Lambert W Functions

Lambert’s W functions, W {(z), are defined to be solutions of the equation
W (z) exp(W(x)) = x. This function has multiple branches for = < 0; however, it has only
two real-valued branches. We define W (z) to be the principal branch, where W > —1 for
x < 0, and W_;(x) to be the other real branch, where W < —1 for z < 0. The Lambert
functions are declared in the header file ‘gsl_sf_lambert.h’.

double gsl_sf lambert_WO0 (double x) Function
int gsl sf lambert_WO0_e (double x, gsl_sf_result * result) Function
These compute the principal branch of the Lambert W function, Wy(z).

double gsl_sf lambert_Wm1l (double x) Function
int gsl sf lambert_Wml_e (double x, gsl_sf_result * result) Function
These compute the secondary real-valued branch of the Lambert W function, W_;(z).

7.24 Legendre Functions and Spherical Harmonics

The Legendre Functions and Legendre Polynomials are described in Abramowitz & Ste-
gun, Chapter 8. These functions are declared in the header file ‘gsl_sf_legendre.h’.

7.24.1 Legendre Polynomials

double gsl_sf legendre_P1 (double x) Function
double gsl_sf legendre_P2 (double x) Function
double gsl_sf legendre_P3 (double x) Function
int gsl_sf_legendre_P1_e (double x, gsl_sf_result * result) Function
int gsl sf legendre_P2_e (double x, gsl_sf_result * result) Function
int gsl sf legendre_P3_e (double x, gsl_sf_result * result) Function

These functions evaluate the Legendre polynomials P;(x) using explicit representa-
tions for [ = 1,2, 3.

double gsl_sf legendre_Pl (int I, double x) Function

int gsl_sf_legendre_Pl_e (int I, double x, gsl_sf_result * result) Function
These functions evaluate the Legendre polynomial P(x) for a specific value of I, x
subject to 1 > 0, |z| <1

int gsl sf legendre_Pl_array (int Imax, double x, double Function
result_array]|)
This function computes an array of Legendre polynomials P;(z) for I = 0,...,Imaz,
2l <1
double gsl_sf legendre_QO (double x) Function
int gsl sf legendre_QO0_e (double x, gsl_sf_result * result) Function

These routines compute the Legendre function Qq(z) for z > —1, z # 1.
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double gsl_sf legendre_Q1 (double x) Function
int gsl sf legendre_Q1_e (double x, gsl_sf_result * result) Function
These routines compute the Legendre function @Q;(z) for z > —1, = # 1.

double gsl_sf legendre_Ql (int I, double x) Function
int gsl sf legendre_Ql_e (int I, double x, gsl_sf_result * result) Function
These routines compute the Legendre function @Q;(x) for x > —1, x # 1 and [ > 0.

7.24.2 Associated Legendre Polynomials and Spherical Harmonics

The following functions compute the associated Legendre Polynomials P/ (x). Note that
this function grows combinatorially with [ and can overflow for [ larger than about 150.
There is no trouble for small m, but overflow occurs when m and [ are both large. Rather
than allow overflows, these functions refuse to calculate P/"(x) and return GSL_EOVRFLW
when they can sense that [ and m are too big.

If you want to calculate a spherical harmonic, then do not use these functions. In-
stead use gsl_sf_legendre_sphPlm() below, which uses a similar recursion, but with the
normalized functions.

double gsl_sf legendre_Plm (int I, int m, double x) Function
int gsl_sf legendre_Plm_e (int I, int m, double x, gsl_sf_result Function
* result)
These routines compute the associated Legendre polynomial P/ (z) for m > 0,1 > m,
lx] < 1.
int gsl_sf legendre_Plm_array (int Imax, int m, double x, Function

double result_array]|)
This function computes an array of Legendre polynomials P/ (x) for m > 0, [ =

Iml,...,Imaz, |z| < 1.
double gsl_sf legendre_sphPlm (int I, int m, double x) Function
int gsl sf legendre_sphPlm_e (int I, int m, double x, Function

gsl_sf_result * result)
These routines compute the normalized associated Legendre polynomial
V(20 +1)/(4m)\/(Il —m)! /(I +m)!P/"(x) suitable for use in spherical harmonics.
The parameters must satisfy m > 0, [ > m, || < 1. Theses routines avoid the
overflows that occur for the standard normalization of P/™(x).

int gsl_sf legendre_sphPlm_array (int Imax, int m, double x, Function
double result_array]|)
This function computes an array of normalized associated Legendre functions

VI+1)/(4m) /(T —m) /(T +m)!P"(x) for m >0, 1 =|m|,...,Imaz, |z| <1

int gsl sf legendre_array size (const int Imax, const int m) Function
This functions returns the size of result_array[] needed for the array versions of P/ (z),
Imax - m + 1.
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7.24.3 Conical Functions

The Conical Functions P¥ 5y, (2), @} ), are described in Abramowitz & Stegun,
Section 8.12.

double gsl_sf_conicalP_half (double lambda, double x) Function
int gsl_sf conicalP_half_e (double lambda, double x, Function
gsl_sf_result * result)

These routines compute the irregular Spherical Conical Function Pi/f/g an(z) for z >
-1

double gsl_sf conicalP_mhalf (double lambda, double x) Function
int gsl_sf conicalP_mbhalf e (double lambda, double x, Function
gsl_sf_result * result)

These routines compute the regular Spherical Conical Function P:ll//; () for x>
—1.

double gsl _sf conicalP_0 (double lambda, double x) Function
int gsl sf conicalP_0_e (double lambda, double x, gsl_sf_result Function
* result)

These routines compute the conical function P, sorin(@) for z > —1.

double gsl_sf conicalP_1 (double lambda, double x) Function
int gsl_sf conicalP_1_e (double lambda, double x, gsl_sf_result Function
* result)

These routines compute the conical function P!, , ., (z) for z > —1.

double gsl_sf_conicalP_sph_reg (int I, double lambda, double x) Function
int gsl sf conicalP_sph_reg_e (int I, double lambda, double x, Function
gsl_sf_result * result)
These routines compute the Regular Spherical Conical Function P__ll//;;ilk(x) for z >
~1,1> 1.
double gsl_sf conicalP _cyl reg (int m, double lambda, double x) Function
int gsl_sf conicalP _cyl reg_e (int m, double lambda, double x, Function

gsl_sf_result * result)
These routines compute the Regular Cylindrical Conical Function P~7, in(x) for
z>—-1,m>-1.

7.24.4 Radial Functions for Hyperbolic Space

The following spherical functions are specializations of Legendre functions which give
the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space H3d. Of
particular interest is the flat limit, A — co, n — 0, An fixed.
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double gsl_sf legendre_H3d_0 (double lambda, double eta) Function
int gsl sf legendre _H3d_0_e (double lambda, double eta, Function
gsl_sf_result * result)
These routines compute the zeroth radial eigenfunction of the Laplacian on the 3-
dimensional hyperbolic space, L¥3% (), ) := sin(An)/(Asinh(n)) for n > 0. In the flat
limit this takes the form LI34(\,n) = jo(\n)

double gsl_sf legendre_H3d_1 (double lambda, double eta) Function
int gsl _sf legendre H3d_1_e (double lambda, double eta, Function
gsl_sf_result * result)
These routines compute the first radial eigenfunction of the Laplacian on the 3-
dimensional hyperbolic space, L#3¢(\, n) := 1/4/A2 + 1sin(\n)/(Asinh(n))(coth(n) —
Acot(An)) for n > 0. In the flat limit this takes the form LI34(\ n) = j,(\n).

double gsl_sf legendre_H3d (int I, double lambda, double eta) Function
int gsl_sf legendre_H3d_e (int I, double lambda, double eta, Function
gsl_sf_result * result)
These routines compute the I'th radial eigenfunction of the Laplacian on the 3-
dimensional hyperbolic space n > 0, [ > 0. In the flat limit this takes the form

LA m) = ji(An).

int gsl sf legendre H3d_array (int Imax, double lambda, double Function
eta, double result_array]|)
This function computes an array of radial eigenfunctions L3¢(\,n) for 0 < I < lmaz.

7.25 Logarithm and Related Functions

Information on the properties of the Logarithm function can be found in Abramowitz &
Stegun, Chapter 4. The functions described in this section are declared in the header file
‘gsl_sf_log.h'.

double gsl_sf_log (double x) Function
int gsl sf log_e (double x, gsl_sf_result * result) Function
These routines compute the logarithm of x, log(x), for > 0.

double gsl_sf log_abs (double x) Function
int gsl sf log_abs_e (double x, gsl_sf_result * result) Function
These routines compute the logarithm of the magnitude of x, log(|z|), for = # 0.

int gsl sf complex_log_e (double zr, double zi, gsl_sf_result * Function
Inr, gsl_sf_result * theta)
This routine computes the complex logarithm of z = 2, +iz;. The results are returned
as Inr, theta such that exp(inr + i) = z, + iz;, where 0 lies in the range [—7, 7.

double gsl_sf log_1plusx (double x) Function

int gsl sf log_1plusx_e (double x, gsl_sf_result * result) Function
These routines compute log(1 + ) for x > —1 using an algorithm that is accurate for
small x.
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double gsl_sf log_1plusx_mx (double x) Function

int gsl sf log_1plusx_mx_e (double x, gsl_sf_result * result) Function
These routines compute log(1+x) —x for x > —1 using an algorithm that is accurate
for small z.

7.26 Power Function

The following functions are equivalent to the function gsl_pow_int (see Section 4.4
[Small integer powers|, page 18) with an error estimate. These functions are declared in the
header file ‘gsl_sf_pow_int.h’.

double gsl sf pow_int (double x, int n) Function

int gsl sf pow_int_e (double x, int n, gsl_sf_result * result) Function
These routines compute the power ™ for integer n. The power is computed using
the minimum number of multiplications. For example, z® is computed as ((z?%)?)?,
requiring only 3 multiplications. For reasons of efficiency, these functions do not check
for overflow or underflow conditions.

#include <gsl/gsl_sf_pow_int.h>
/* compute 3.0%*12 %/
double y = gsl_sf_pow_int(3.0, 12);

7.27 Psi (Digamma) Function

The polygamma functions of order m defined by ™ (x) = (d/dz)™p(x) =
(d/dx)™ 1 log(T'(x)), where 1(x) = I(x)/T'(x) is known as the digamma function. These
functions are declared in the header file ‘gsl_sf_psi.h’.

7.27.1 Digamma Function

double gsl_sf psi_int (int n) Function

int gsl sf psi_int_e (int n, gsl_sf_result * result) Function
These routines compute the digamma function (n) for positive integer n. The
digamma function is also called the Psi function.

double gsl _sf psi (double x) Function
int gsl sf psi_e (double x, gsl_sf_result * result) Function
These routines compute the digamma function v (z) for general x, x # 0.

double gsl_sf psi_1piy (double y) Function
int gsl sf psi_lpiy_e (double y, gsl_sf_result * result) Function
These routines compute the real part of the digamma function on the line 1 + iy,

Re[yp(1 +iy)].
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7.27.2 Trigamma Function

double gsl_sf_psi_1_int (int n) Function
int gsl sf psi_1_int_e (int n, gsl_sf_result * result) Function
These routines compute the Trigamma function ¢'(n) for positive integer n.

7.27.3 Polygamma Function

double gsl sf psi_n (int m, double x) Function
int gsl sf psi_n_e (int m, double x, gsl_sf_result * result) Function
These routines compute the polygamma function (™) (z) for ¢ > 0, z > 0.

7.28 Synchrotron Functions

The functions described in this section are declared in the header file
‘gsl_sf_synchrotron.h’.

double gsl_sf synchrotron_1 (double x) Function
int gsl sf synchrotron_1_e (double x, gsl_sf_result * result) Function
These routines compute the first synchrotron function z [ ° dtKjs3(t) for = > 0.

double gsl_sf synchrotron_2 (double x) Function
int gsl_sf_synchrotron_2_e (double x, gsl_sf_result * result) Function
These routines compute the second synchrotron function zK5,3(x) for > 0.

7.29 Transport Functions

The transport functions J(n,x) are defined by the integral representations J(n,z) :=
Jy dttme’/(e' — 1)%. They are declared in the header file ‘gsl_sf_transport.h’.

double gsl_sf transport_2 (double x) Function
int gsl sf transport_2_e (double x, gsl_sf_result * result) Function
These routines compute the transport function J(2,z).

double gsl_sf_transport_3 (double x) Function
int gsl sf transport_3_e (double x, gsl_sf_result * result) Function
These routines compute the transport function J(3, z).

double gsl_sf transport_4 (double x) Function
int gsl sf transport_4_e (double x, gsl_sf_result * result) Function
These routines compute the transport function J(4, z).

double gsl_sf transport_5 (double x) Function
int gsl sf transport_5_e (double x, gsl_sf_result * result) Function
These routines compute the transport function J(5, z).
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7.30 Trigonometric Functions

The library includes its own trigonometric functions in order to provide consistency
across platforms and reliable error estimates. These functions are declared in the header
file ‘gsl_sf_trig.h’.

7.30.1 Circular Trigonometric Functions

double gsl_sf sin (double x) Function
int gsl sf sin_e (double x, gsl_sf_result * result) Function
These routines compute the sine function sin(z).

double gsl_sf cos (double x) Function
int gsl_sf_cos_e (double x, gsl_sf_result * result) Function
These routines compute the cosine function cos(x).

double gsl_sf_hypot (double x, double y) Function

int gsl sf_hypot_e (double x, double y, gsl_sf_result * result) Function
These routines compute the hypotenuse function \/z? + y? avoiding overflow and un-
derflow.

double gsl_sf sinc (double x) Function

int gsl_sf sinc_e (double x, gsl_sf_result * result) Function

These routines compute sinc(x) = sin(wx)/(wz) for any value of x.

7.30.2 Trigonometric Functions for Complex Arguments

int gsl sf complex_sin_e (double zr, double zi, gsl_sf_result * Function
szr, gsl_sf_result * szi)
This function computes the complex sine, sin(z, +iz;) storing the real and imaginary
parts in szr, szi.

int gsl sf_ complex_cos_e (double zr, double zi, gsl_sf_result * Function
czr, gsl_sf_result * czi)
This function computes the complex cosine, cos(z,+iz;) storing the real and imaginary
parts in szr, szi.

int gsl sf_complex_logsin_e (double zr, double zi, gsl_sf_result Function
* Iszr, gsl_sf_result * Iszi)
This function computes the logarithm of the complex sine, log(sin(z, + iz;)) storing
the real and imaginary parts in szr, szi.
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7.30.3 Hyperbolic Trigonometric Functions

double gsl_sf Insinh (double x) Function
int gsl sf Insinh_e (double x, gsl_sf_result * result) Function
These routines compute log(sinh(z)) for x > 0.

double gsl_sf Incosh (double x) Function
int gsl sf Incosh_e (double x, gsl_sf_result * result) Function
These routines compute log(cosh(x)) for any x.

7.30.4 Conversion Functions

int gsl sf polar_to_rect (double r, double theta, gsl_sf_result * Function
x, gsl_sf_result * y);
This function converts the polar coordinates (r,theta) to rectilinear coordinates (x,y),
x =rcos(f), y =rsin(h).

int gsl sf rect_to_polar (double x, double y, gsl_sf_result * r, Function
gsl_sf_result * theta)
This function converts the rectilinear coordinates (x,y) to polar coordinates (r,theta),
such that = = rcos(f), y = rsin(f). The argument theta lies in the range [—m, 7].

7.30.5 Restriction Functions

double gsl_sf angle restrict_symm (double theta) Function
int gsl sf angle restrict_symm_e (double * theta) Function
These routines force the angle theta to lie in the range (—m,7].

double gsl_sf angle restrict_pos (double theta) Function
int gsl_sf_angle_restrict_pos_e (double * theta) Function
These routines force the angle theta to lie in the range [0, 27).

7.30.6 Trigonometric Functions With Error Estimates

double gsl_sf_sin_err (double x, double dx) Function

int gsl sf sin_err_e (double x, double dx, gsl_sf_result * result) Function
These routines compute the sine of an angle x with an associated absolute error dx,
sin(z £ dx).

double gsl_sf_cos_err (double x, double dx) Function

int gsl sf cos_err_e (double x, double dx, gsl_sf_result * result) Function

These routines compute the cosine of an angle x with an associated absolute error
dx, cos(x £ dzx).
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7.31 Zeta Functions

The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2. The
functions described in this section are declared in the header file ‘gsl_sf_zeta.h’.

7.31.1 Riemann Zeta Function

The Riemann zeta function is defined by the infinite sum ((s) = >, k7°.

double gsl _sf zeta_int (int n) Function
int gsl sf zeta_int_e (int n, gsl_sf_result * result) Function
These routines compute the Riemann zeta function (n) for integer n, n # 1.

double gsl_sf zeta (double s) Function
int gsl sf zeta_e (double s, gsl_sf_result * result) Function
These routines compute the Riemann zeta function ((s) for arbitrary s, s # 1.

7.31.2 Hurwitz Zeta Function

The Hurwitz zeta function is defined by ((s,q) = > 0" (k + ¢) .

double gsl_sf hzeta (double s, double q) Function
int gsl sf hzeta_e (double s, double q, gsl_sf_result * result) Function
These routines compute the Hurwitz zeta function ((s,q) for s > 1, ¢ > 0.

7.31.3 Eta Function

The eta function is defined by n(s) = (1 —2'7%)((s).

double gsl_sf_eta_int (int n) Function
int gsl sf eta_int_e (int n, gsl_sf_result * result) Function
These routines compute the eta function n(n) for integer n.

double gsl_sf eta (double s) Function
int gsl sf eta_e (double s, gsl_sf_result * result) Function
These routines compute the eta function 7(s) for arbitrary s.

7.32 Examples

The following example demonstrates the use of the error handling form of the special
functions, in this case to compute the Bessel function Jy(5.0),

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int

main (void)

{
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double x = 5.0;
gsl_sf_result result;

double expected = -0.17759677131433830434739701;
int status = gsl_sf_bessel_JO_e (x, &result);

printf ("status = %s\n", gsl_strerror(status));
printf("J0(5.0) = %.18f\n"
" +/- % .18f\n",
result.val, result.err);
printf("exact = %.18f\n", expected);
return status;

}
Here are the results of running the program,
$ ./a.out
status = success
J0(5.0) = -0.177596771314338292
+/- 0.000000000000000193
exact = -0.177596771314338292

The next program computes the same quantity using the natural form of the function. In
this case the error term result.err and return status are not accessible.

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int
main (void)

{
double x = 5.0;
double expected = -0.17759677131433830434739701;
double y = gsl_sf_bessel_JO (x);

printf("J0(5.0) = %.18f\n", y);

printf ("exact = %.18f\n", expected);
return O;
}
The results of the function are the same,
$ ./a.out
J0(5.0) = -0.177596771314338292
exact = -0.177596771314338292

7.33 References and Further Reading

The library follows the conventions of Abramowitz & Stegun where possible,

Abramowitz & Stegun (eds.), Handbook of Mathematical Functions
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The following papers contain information on the algorithms used to compute the special
functions,

MISCFUN: A software package to compute uncommon special functions. ACM Trans.
Math. Soft., vol. 22, 1996, 288-301

G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition (Cambridge
University Press, 1944).

G. Nemeth, Mathematical Approximations of Special Functions, Nova Science Publish-
ers, ISBN 1-56072-052-2

B.C. Carlson, Special Functions of Applied Mathematics (1977)

W.J. Thompson, Atlas for Computing Mathematical Functions, John Wiley & Sons,
New York (1997).

Y.Y. Luke, Algorithms for the Computation of Mathematical Functions, Academic
Press, New York (1977).
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8 Vectors and Matrices

The functions described in this chapter provide a simple vector and matrix interface
to ordinary C arrays. The memory management of these arrays is implemented using a
single underlying type, known as a block. By writing your functions in terms of vectors
and matrices you can pass a single structure containing both data and dimensions as an
argument without needing additional function parameters. The structures are compatible
with the vector and matrix formats used by BLAS routines.

8.1 Data types

All the functions are available for each of the standard data-types. The versions for
double have the prefix gsl_block, gsl_vector and gsl_matrix. Similarly the versions
for single-precision float arrays have the prefix gsl_block_float, gsl_vector_float and
gsl_matrix_float. The full list of available types is given below,

gsl_block double
gsl_block_float float
gsl_block_long_double long double
gsl_block_int int
gsl_block_uint unsigned int
gsl_block_long long
gsl_block_ulong unsigned long
gsl_block_short short
gsl_block_ushort unsigned short
gsl_block_char char
gsl_block_uchar unsigned char
gsl_block_complex complex double
gsl_block_complex_float complex float

gsl_block_complex_long_double complex long double

Corresponding types exist for the gsl_vector and gsl_matrix functions.

8.2 Blocks

For consistency all memory is allocated through a gsl_block structure. The structure
contains two components, the size of an area of memory and a pointer to the memory. The
gsl_block structure looks like this,

typedef struct
{

size_t size;
double * data;
} gsl_block;

Vectors and matrices are made by slicing an underlying block. A slice is a set of elements
formed from an initial offset and a combination of indices and step-sizes. In the case of
a matrix the step-size for the column index represents the row-length. The step-size for a
vector is known as the stride.

The functions for allocating and deallocating blocks are defined in ‘gsl_block.h’
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8.2.1 Block allocation

The functions for allocating memory to a block follow the style of malloc and free. In
addition they also perform their own error checking. If there is insufficient memory available
to allocate a block then the functions call the GSL error handler (with an error number
of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library error
handler to abort your program then it isn’t necessary to check every alloc.

gsl_block * gsl _block_alloc (size_t n) Function
This function allocates memory for a block of n double-precision elements, returning
a pointer to the block struct. The block is not initialized and so the values of its
elements are undefined. Use the function gsl_block_calloc if you want to ensure
that all the elements are initialized to zero.

A null pointer is returned if insufficient memory is available to create the block.

gsl_block * gsl_block_calloc (size_t n) Function
This function allocates memory for a block and initializes all the elements of the block
to zero.

void gsl_block_free (gsl_block * b) Function

This function frees the memory used by a block b previously allocated with gsl_
block_alloc or gsl_block_calloc.

8.2.2 Reading and writing blocks

The library provides functions for reading and writing blocks to a file as binary data or
formatted text.

int gsl block_fwrite (FILE * stream, const gsl_block * b) Function
This function writes the elements of the block b to the stream stream in binary format.
The return value is 0 for success and GSL_EFAILED if there was a problem writing to
the file. Since the data is written in the native binary format it may not be portable
between different architectures.

int gsl block_fread (FILE * stream, gsl_block * b) Function
This function reads into the block b from the open stream stream in binary format.
The block b must be preallocated with the correct length since the function uses the
size of b to determine how many bytes to read. The return value is 0 for success and
GSL_EFAILED if there was a problem reading from the file. The data is assumed to
have been written in the native binary format on the same architecture.

int gsl block_fprintf (FILE * stream, const gsl_block * b, const Function
char * format)
This function writes the elements of the block b line-by-line to the stream stream
using the format specifier format, which should be one of the %g, %e or %f formats for
floating point numbers and %d for integers. The function returns 0 for success and
GSL_EFAILED if there was a problem writing to the file.



Chapter 8: Vectors and Matrices 75

int gsl block_fscanf (FILE * stream, gsl_block * b) Function
This function reads formatted data from the stream stream into the block b. The
block b must be preallocated with the correct length since the function uses the size
of b to determine how many numbers to read. The function returns 0 for success and
GSL_EFAILED if there was a problem reading from the file.

8.2.3 Example programs for blocks

The following program shows how to allocate a block,

#include <stdio.h>
#include <gsl/gsl_block.h>

int
main (void)

{
gsl_block * b = gsl_block_alloc (100);

printf ("length of block = %u\n", b->size);
printf ("block data address = %#x\n", b->data);

gsl_block_free (b);
return O;

}

Here is the output from the program,

length of block = 100
block data address = 0x804b0d8

8.3 Vectors

Vectors are defined by a gsl_vector structure which describes a slice of a block. Dif-
ferent vectors can be created which point to the same block. A vector slice is a set of
equally-spaced elements of an area of memory.

The gsl_vector structure contains five components, the size, the stride, a pointer to the
memory where the elements are stored, data, a pointer to the block owned by the vector,
block, if any, and an ownership flag, owner. The structure is very simple and looks like this,

typedef struct
{

size_t size;

size_t stride;

double * data;

gsl_block * block;

int owner;

} gsl_vector;

The size is simply the number of vector elements. The range of valid indices runs from 0
to size-1. The stride is the step-size from one element to the next in physical memory,
measured in units of the appropriate datatype. The pointer data gives the location of the
first element of the vector in memory. The pointer block stores the location of the memory
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block in which the vector elements are located (if any). If the vector owns this block then
the owner field is set to one and the block will be deallocated when the vector is freed. If
the vector points to a block owned by another object then the owner field is zero and any
underlying block will not be deallocated.

The functions for allocating and accessing vectors are defined in ‘gsl_vector.h’

8.3.1 Vector allocation

The functions for allocating memory to a vector follow the style of malloc and free. In
addition they also perform their own error checking. If there is insufficient memory available
to allocate a vector then the functions call the GSL error handler (with an error number
of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library error
handler to abort your program then it isn’t necessary to check every alloc.

gsl_vector * gsl vector_alloc (size_t n) Function
This function creates a vector of length n, returning a pointer to a newly initialized
vector struct. A new block is allocated for the elements of the vector, and stored in
the block component of the vector struct. The block is “owned” by the vector, and
will be deallocated when the vector is deallocated.

gsl_vector * gsl vector_calloc (size_t n) Function
This function allocates memory for a vector of length n and initializes all the elements
of the vector to zero.

void gsl_vector_free (gsl_vector * v) Function
This function frees a previously allocated vector v. If the vector was created using
gsl_vector_alloc then the block underlying the vector will also be deallocated. If
the vector has been created from another object then the memory is still owned by
that object and will not be deallocated.

8.3.2 Accessing vector elements

Unlike FORTRAN compilers, C compilers do not usually provide support for range check-
ing of vectors and matrices. Range checking is available in the GNU C Compiler extension
checkergcc but it is not available on every platform. The functions gsl_vector_get and
gsl_vector_set can perform portable range checking for you and report an error if you
attempt to access elements outside the allowed range.

The functions for accessing the elements of a vector or matrix are defined in
‘gsl_vector.h’ and declared extern inline to eliminate function-call overhead. If
necessary you can turn off range checking completely without modifying any source files
by recompiling your program with the preprocessor definition GSL_RANGE_CHECK_OFF.
Provided your compiler supports inline functions the effect of turning off range checking
is to replace calls to gsl_vector_get(v,i) by v->datalixv->stride] and calls to
gsl_vector_set(v,i,x) by v->datali*v->stride]=x. Thus there should be no
performance penalty for using the range checking functions when range checking is turned

off.
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double gsl vector_get (const gsl_vector * v, size_t i) Function
This function returns the i-th element of a vector v. If i lies outside the allowed range
of 0 to n-1 then the error handler is invoked and 0 is returned.

void gsl_vector_set (gsl_vector * v, size_t i, double x) Function
This function sets the value of the i-th element of a vector v to x. If i lies outside the
allowed range of 0 to n-1 then the error handler is invoked.

double * gsl vector_ptr (gsl_vector * v, size_t i) Function

const double * gsl_vector_ptr (const gsl_vector * v, size_t i) Function
These functions return a pointer to the i-th element of a vector v. If i lies outside
the allowed range of 0 to n-1 then the error handler is invoked and a null pointer is
returned.

8.3.3 Initializing vector elements

void gsl_vector_set_all (gsl_vector * v, double x) Function
This function sets all the elements of the vector v to the value x.

void gsl_vector_set_zero (gsl_vector * v) Function
This function sets all the elements of the vector v to zero.

int gsl_vector_set_basis (gsl_vector * v, size_t i) Function
This function makes a basis vector by setting all the elements of the vector v to zero
except for the i-th element which is set to one.

8.3.4 Reading and writing vectors

The library provides functions for reading and writing vectors to a file as binary data or
formatted text.

int gsl vector_fwrite (FILE * stream, const gsl_vector * v) Function
This function writes the elements of the vector v to the stream stream in binary
format. The return value is 0 for success and GSL_EFAILED if there was a problem
writing to the file. Since the data is written in the native binary format it may not
be portable between different architectures.

int gsl vector_fread (FILE * stream, gsl_vector * v) Function
This function reads into the vector v from the open stream stream in binary format.
The vector v must be preallocated with the correct length since the function uses the
size of v to determine how many bytes to read. The return value is 0 for success and
GSL_EFAILED if there was a problem reading from the file. The data is assumed to
have been written in the native binary format on the same architecture.
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int gsl vector_fprintf (FILE * stream, const gsl_vector * v, const Function
char * format)
This function writes the elements of the vector v line-by-line to the stream stream
using the format specifier format, which should be one of the %g, %e or %f formats for
floating point numbers and %d for integers. The function returns 0 for success and
GSL_EFAILED if there was a problem writing to the file.

int gsl vector_fscanf (FILE * stream, gsl_vector * v) Function
This function reads formatted data from the stream stream into the vector v. The
vector v must be preallocated with the correct length since the function uses the size
of v to determine how many numbers to read. The function returns 0 for success and
GSL_EFATILED if there was a problem reading from the file.

8.3.5 Vector views

In addition to creating vectors from slices of blocks it is also possible to slice vectors
and create vector views. For example, a subvector of another vector can be described with
a view, or two views can be made which provide access to the even and odd elements of a
vector.

A vector view is a temporary object, stored on the stack, which can be used to operate
on a subset of vector elements. Vector views can be defined for both constant and non-
constant vectors, using separate types that preserve constness. A vector view has the type
gsl_vector_view and a constant vector view has the type gsl_vector_const_view. In
both cases the elements of the view can be accessed as a gsl_vector using the vector
component of the view object. A pointer to a vector of type gsl_vector * or const gsl_
vector * can be obtained by taking the address of this component with the & operator.

gsl_vector_view gsl vector_subvector (gsl_vector *v, size_t Function
offset, size_t n)
gsl_vector_const_view gsl vector_const_subvector (const Function

gsl_vector * v, size_t offset, size_t 11)
These functions return a vector view of a subvector of another vector v. The start of
the new vector is offset by offset elements from the start of the original vector. The
new vector has n elements. Mathematically, the i-th element of the new vector v’ is
given by,
v’ (i) = v->datal[(offset + i)*v->stride]
where the index i runs from 0 to n-1.

The data pointer of the returned vector struct is set to null if the combined parameters
(offset,n) overrun the end of the original vector.

The new vector is only a view of the block underlying the original vector, v. The block
containing the elements of v is not owned by the new vector. When the view goes
out of scope the original vector v and its block will continue to exist. The original
memory can only be deallocated by freeing the original vector. Of course, the original
vector should not be deallocated while the view is still in use.

The function gsl_vector_const_subvector is equivalent to gsl_vector_subvector
but can be used for vectors which are declared const.
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gsl_vector gsl vector_subvector_with_stride (gsl_vector *v, Function
size_t offset, size_t stride, size_t n)
gsl_vector_const_view Function

gsl_vector_const_subvector_with_stride (const gsl_vector * v,
size_t offset, size_t stride, size_t n)
These functions return a vector view of a subvector of another vector v with an
additional stride argument. The subvector is formed in the same way as for gsl_
vector_subvector but the new vector has n elements with a step-size of stride from
one element to the next in the original vector. Mathematically, the i-th element of
the new vector v’ is given by,

v’ (i) = v->datal[(offset + i*stride)x*v->stride]
where the index i runs from 0 to n-1.

Note that subvector views give direct access to the underlying elements of the original
vector. For example, the following code will zero the even elements of the vector v of
length n, while leaving the odd elements untouched,

gsl_vector_view v_even
= gsl_vector_subvector_with_stride (v, 0, 2, n/2);
gsl_vector_set_zero (&v_even.vector);

A vector view can be passed to any subroutine which takes a vector argument just as
a directly allocated vector would be, using &view .vector. For example, the following
code computes the norm of odd elements of v using the BLAS routine DNRM2,

gsl_vector_view v_odd
= gsl_vector_subvector_with_stride (v, 1, 2, n/2);
double r = gsl_blas_dnrm2 (&v_odd.vector);

The function gsl_vector_const_subvector_with_stride is equivalent to
gsl_vector_subvector_with_stride but can be used for vectors which are
declared const.

gsl_vector_view gsl vector_complex_real (gsl_vector_complex Function
*V)
gsl_vector_const_view gsl vector_complex_const_real (const Function

gsl_vector_complex *V)
These functions return a vector view of the real parts of the complex vector v.

The function gsl_vector_complex_const_real is equivalent to gsl_vector_
complex_real but can be used for vectors which are declared const.

gsl_vector_view gsl vector_complex_imag (gsl_vector_complex Function
*V)
gsl_vector_const_view gsl vector_complex_const_imag (const Function

gsl_vector_complex *Vv)
These functions return a vector view of the imaginary parts of the complex vector v.

The function gsl_vector_complex_const_imag is equivalent to gsl_vector_
complex_imag but can be used for vectors which are declared const.
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gsl_vector_view gsl vector_view_array (double *base, size_t n) Function

gsl_vector_const_view gsl vector_const_view_array (const Function
double *base, size_t n)
These functions return a vector view of an array. The start of the new vector is given
by base and has n elements. Mathematically, the i-th element of the new vector v’ is
given by,
v’ (i) = basel[il
where the index i runs from 0 to n-1.

The array containing the elements of v is not owned by the new vector view. When
the view goes out of scope the original array will continue to exist. The original
memory can only be deallocated by freeing the original pointer base. Of course, the
original array should not be deallocated while the view is still in use.

The function gsl_vector_const_view_array is equivalent to gsl_vector_view_
array but can be used for arrays which are declared const.

gsl_vector_view gsl vector_view_array with_stride (double * Function
base, size_t stride, size_t n)
gsl_vector_const_view Function

gsl_vector_const_view_array_with_stride (const double * base,

size_t stride, size_t n)
These functions return a vector view of an array base with an additional stride argu-
ment. The subvector is formed in the same way as for gsl_vector_view_array but
the new vector has n elements with a step-size of stride from one element to the next
in the original array. Mathematically, the i-th element of the new vector v’ is given
by,

v’ (i) = basel[i*stride]

where the index i runs from 0 to n-1.

Note that the view gives direct access to the underlying elements of the original array.
A vector view can be passed to any subroutine which takes a vector argument just as
a directly allocated vector would be, using &view .vector.

The function gsl_vector_const_view_array_with_stride is equivalent to gsl_
vector_view_array_with_stride but can be used for arrays which are declared
const.

8.3.6 Copying vectors

Common operations on vectors such as addition and multiplication are available in the
BLAS part of the library (see Chapter 12 [BLAS Support], page 114). However, it is useful
to have a small number of utility functions which do not require the full BLAS code. The
following functions fall into this category.

int gsl_vector_memcpy (gsl_vector * dest, const gsl_vector * Function
src)
This function copies the elements of the vector src into the vector dest. The two
vectors must have the same length.
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int gsl vector_swap (gsl_vector * v, gsl_vector * w) Function
This function exchanges the elements of the vectors v and w by copying. The two
vectors must have the same length.

8.3.7 Exchanging elements

The following function can be used to exchange, or permute, the elements of a vector.

int gsl_vector_swap_elements (gsl_vector * v, size_t i, size_t Function
j)

This function exchanges the i-th and j-th elements of the vector v in-place.

int gsl_vector_reverse (gsl_vector * v) Function
This function reverses the order of the elements of the vector v.

8.3.8 Vector operations

The following operations are only defined for real vectors.

int gsl vector_add (gsl_vector * a, const gsl_vector * b) Function
This function adds the elements of vector b to the elements of vector a, a, = a; + b;.
The two vectors must have the same length.

int gsl vector_sub (gsl_vector * a, const gsl_vector * b) Function
This function subtracts the elements of vector b from the elements of vector a, a; =
a; — b;. The two vectors must have the same length.

int gsl vector_mul (gsl_vector * a, const gsl_vector * b) Function
This function multiplies the elements of vector a by the elements of vector b, a; =
a; * b;. The two vectors must have the same length.

int gsl vector_div (gsl_vector * a, const gsl_vector * b) Function
This function divides the elements of vector a by the elements of vector b, a = a;/b;.
The two vectors must have the same length.

int gsl vector_scale (gsl_vector * a, const double x) Function
This function multiplies the elements of vector a by the constant factor x, a = za,.

int gsl vector_add_constant (gsl_vector * a, const double x) Function
This function adds the constant value x to the elements of the vector a, a; = a; + x.
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8.3.9 Finding maximum and minimum elements of vectors

double gsl_vector_max (const gsl_vector * v) Function
This function returns the maximum value in the vector v.

double gsl vector_min (const gsl_vector * v) Function
This function returns the minimum value in the vector v.

void gsl_-vector_minmax (const gsl_vector * v, double * min_out, Function
double * max_out)
This function returns the minimum and maximum values in the vector v, storing
them in min_out and max_out.

size_t gsl_vector_max_index (const gsl_vector * v) Function
This function returns the index of the maximum value in the vector v. When there
are several equal maximum elements then the lowest index is returned.

size_t gsl vector_min_index (const gsl_vector * v) Function
This function returns the index of the minimum value in the vector v. When there
are several equal minimum elements then the lowest index is returned.

void gsl_vector_minmax_index (const gsl_vector * v, size_t * Function
imin, size_t * imax)
This function returns the indices of the minimum and maximum values in the vector v,
storing them in imin and imax. When there are several equal minimum or maximum
elements then the lowest indices are returned.

8.3.10 Vector properties

int gsl_vector_isnull (const gsl_vector * v) Function
This function returns 1 if all the elements of the vector v are zero, and 0 otherwise.

8.3.11 Example programs for vectors

This program shows how to allocate, initialize and read from a vector using the functions
gsl_vector_alloc, gsl_vector_set and gsl_vector_get.

#include <stdio.h>
#include <gsl/gsl_vector.h>

int
main (void)
{

int i;

gsl_vector * v = gsl_vector_alloc (3);
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for (1 = 0; i < 3; i++)

{
gsl_vector_set (v, i, 1.23 + i);
}
for (i = 0; i < 100; i++)
{
printf("v_%d = %g\n", i, gsl_vector_get (v, i));
}
return O;

¥

Here is the output from the program. The final loop attempts to read outside the range of
the vector v, and the error is trapped by the range-checking code in gsl_vector_get.

v_0 =1.23
v_l = 2.23
v_2 = 3.23

gsl: vector_source.c:12: ERROR: index out of range
I0T trap/Abort (core dumped)
The next program shows how to write a vector to a file.

#include <stdio.h>
#include <gsl/gsl_vector.h>

int
main (void)
{

int i;

gsl_vector * v = gsl_vector_alloc (100);

for (i = 0; 1 < 100; i++)

{
gsl_vector_set (v, i, 1.23 + i);

}

{
FILE * f = fopen("test.dat", "w");
gsl_vector_fprintf (f, v, "%.5g");
fclose (f);

}

return O;

}

After running this program the file ‘test.dat’ should contain the elements of v, written
using the format specifier %.5g. The vector could then be read back in using the function
gsl_vector_fscanf (f, v) as follows:

#include <stdio.h>

#include <gsl/gsl_vector.h>

int
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main (void)
{
int 1i;
gsl_vector * v = gsl_vector_alloc (10);

{
FILE * f = fopen("test.dat", "r");
gsl_vector_fscanf (f, v);
fclose (f);
}
for (i = 0; 1 < 10; i++)
{
printf ("%g\n", gsl_vector_get(v, i));
}
return O;

8.4 Matrices

Matrices are defined by a gsl_matrix structure which describes a generalized slice of
a block. Like a vector it represents a set of elements in an area of memory, but uses two
indices instead of one.

The gsl_matrix structure contains six components, the two dimensions of the matrix,
a physical dimension, a pointer to the memory where the elements of the matrix are stored,
data, a pointer to the block owned by the matrix block, if any, and an ownership flag,
owner. The physical dimension determines the memory layout and can differ from the
matrix dimension to allow the use of submatrices. The gs1_matrix structure is very simple
and looks like this,

typedef struct

{
size_t sizel;
size_t size2;
size_t tda;
double * data;
gsl_block * block;
int owner;

} gsl_matrix;

Matrices are stored in row-major order, meaning that each row of elements forms a con-
tiguous block in memory. This is the standard "C-language ordering" of two-dimensional
arrays. Note that FORTRAN stores arrays in column-major order. The number of rows is
sizel. The range of valid row indices runs from 0 to sizel-1. Similarly size2 is the number
of columns. The range of valid column indices runs from 0 to size2-1. The physical row
dimension tda, or trailing dimension, specifies the size of a row of the matrix as laid out in
memory.
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For example, in the following matrix sizel is 3, size2 is 4, and tda is 8. The physical
memory layout of the matrix begins in the top left hand-corner and proceeds from left to
right along each row in turn.

00 01 02 03 XX XX XX XX

10 11 12 13 XX XX XX XX

20 21 22 23 XX XX XX XX
Each unused memory location is represented by “XX”. The pointer data gives the location
of the first element of the matrix in memory. The pointer block stores the location of the
memory block in which the elements of the matrix are located (if any). If the matrix owns
this block then the owner field is set to one and the block will be deallocated when the
matrix is freed. If the matrix is only a slice of a block owned by another object then the
owner field is zero and any underlying block will not be freed.

The functions for allocating and accessing matrices are defined in ‘gsl_matrix.h’

8.4.1 Matrix allocation

The functions for allocating memory to a matrix follow the style of malloc and free.
They also perform their own error checking. If there is insufficient memory available to
allocate a vector then the functions call the GSL error handler (with an error number of
GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library error
handler to abort your program then it isn’t necessary to check every alloc.

gsl_matrix * gsl matrix_alloc (size_t nl, size_t n2) Function
This function creates a matrix of size nl rows by n2 columns, returning a pointer
to a newly initialized matrix struct. A new block is allocated for the elements of
the matrix, and stored in the block component of the matrix struct. The block is
“owned” by the matrix, and will be deallocated when the matrix is deallocated.

gsl_matrix * gsl-matrix_calloc (size_t nl, size_t n2) Function
This function allocates memory for a matrix of size nl rows by n2 columns and
initializes all the elements of the matrix to zero.

void gsl matrix_free (gsl_matrix * m) Function
This function frees a previously allocated matrix m. If the matrix was created using
gsl_matrix_alloc then the block underlying the matrix will also be deallocated. If
the matrix has been created from another object then the memory is still owned by
that object and will not be deallocated.

8.4.2 Accessing matrix elements

The functions for accessing the elements of a matrix use the same range checking system
as vectors. You turn off range checking by recompiling your program with the preprocessor
definition GSL_RANGE_CHECK_OFF.

The elements of the matrix are stored in "C-order", where the second index moves
continuously through memory. More precisely, the element accessed by the function gsl_
matrix_get(m,i,j) and gsl_matrix_set(m,i,j,x) is
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m->data[i * m->tda + j]

where tda is the physical row-length of the matrix.

double gsl_matrix_get (const gsl_matrix * m, size_t i, size_t j) Function
This function returns the (i,j)th element of a matrix m. If i or j lie outside the allowed
range of 0 to nl-1 and 0 to n2-1 then the error handler is invoked and 0 is returned.

void gsl matrix_set (gsl_matrix * m, size_t i, size_t j, double Function
x)
This function sets the value of the (i,j)th element of a matrix m to x. If i or j lies
outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked.

double * gsl matrix_ptr (gsl_matrix * m, size_t i, size_t j) Function
const double * gsl_matrix_ptr (const gsl_matrix * m, size_t i, Function
size_t j)

These functions return a pointer to the (i,j)th element of a matrix m. If i or j lie
outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked
and a null pointer is returned.

8.4.3 Initializing matrix elements

void gsl matrix_set_all (gsl_matrix * m, double x) Function
This function sets all the elements of the matrix m to the value x.

void gsl.matrix_set_zero (gsl_matrix * m) Function
This function sets all the elements of the matrix m to zero.

void gsl-matrix_set_identity (gsl_matrix * m) Function
This function sets the elements of the matrix m to the corresponding elements of the
identity matrix, m(i,j) = 0(i,7), i.e. a unit diagonal with all off-diagonal elements
zero. This applies to both square and rectangular matrices.

8.4.4 Reading and writing matrices

The library provides functions for reading and writing matrices to a file as binary data
or formatted text.

int gsl matrix_fwrite (FILE * stream, const gsl_matrix * m) Function
This function writes the elements of the matrix m to the stream stream in binary
format. The return value is 0 for success and GSL_EFAILED if there was a problem
writing to the file. Since the data is written in the native binary format it may not
be portable between different architectures.
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int gsl matrix_fread (FILE * stream, gsl_matrix * m) Function
This function reads into the matrix m from the open stream stream in binary format.
The matrix m must be preallocated with the correct dimensions since the function
uses the size of m to determine how many bytes to read. The return value is 0 for
success and GSL_EFAILED if there was a problem reading from the file. The data is
assumed to have been written in the native binary format on the same architecture.

int gsl matrix_fprintf (FILE * stream, const gsl_matrix * m, Function
const char * format)
This function writes the elements of the matrix m line-by-line to the stream stream
using the format specifier format, which should be one of the %g, %e or %f formats for
floating point numbers and %d for integers. The function returns 0 for success and
GSL_EFAILED if there was a problem writing to the file.

int gsl matrix_fscanf (FILE * stream, gsl_matrix * m) Function
This function reads formatted data from the stream stream into the matrix m. The
matrix m must be preallocated with the correct dimensions since the function uses
the size of m to determine how many numbers to read. The function returns 0 for
success and GSL_EFAILED if there was a problem reading from the file.

8.4.5 Matrix views

A matrix view is a temporary object, stored on the stack, which can be used to operate
on a subset of matrix elements. Matrix views can be defined for both constant and non-
constant matrices using separate types that preserve constness. A matrix view has the type
gsl_matrix_view and a constant matrix view has the type gsl_matrix_const_view. In
both cases the elements of the view can by accessed using the matrix component of the
view object. A pointer gsl_matrix * or const gsl_matrix * can be obtained by taking
the address of the matrix component with the & operator. In addition to matrix views it
is also possible to create vector views of a matrix, such as row or column views.

gsl_matrix_view gsl matrix_submatrix (gsl_matrix * m, size_t Function
k1, size_t k2, size_t nl, size_t n2)
gsl_matrix_const_view gsl-matrix_const_submatrix (const Function

gsl_matrix * m, size_t kl, size_t k2, size_t nl, size_t n2)
These functions return a matrix view of a submatrix of the matrix m. The upper-left
element of the submatrix is the element (k1,k2) of the original matrix. The submatrix
has nl rows and n2 columns. The physical number of columns in memory given by
tda is unchanged. Mathematically, the (i,j)-th element of the new matrix is given by,

m’(i,j) = m->datal(kl*m->tda + k1) + i*m->tda + j]
where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.

The data pointer of the returned matrix struct is set to null if the combined param-
eters (i,j,nl,n2,tda) overrun the ends of the original matrix.

The new matrix view is only a view of the block underlying the existing matrix,
m. The block containing the elements of m is not owned by the new matrix view.
When the view goes out of scope the original matrix m and its block will continue to
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exist. The original memory can only be deallocated by freeing the original matrix.
Of course, the original matrix should not be deallocated while the view is still in use.

The function gsl_matrix_const_submatrix is equivalent to gsl_matrix_submatrix
but can be used for matrices which are declared const.

gsl_matrix_view gsl matrix_view_array (double * base, size_t Function
nl, size_t n2)
gsl_matrix_const_view gsl matrix_const_view_array (const Function

double * base, size_t nl, size_t n2)
These functions return a matrix view of the array base. The matrix has nl rows
and n2 columns. The physical number of columns in memory is also given by n2.
Mathematically, the (i,j)-th element of the new matrix is given by,
m’ (i,j) = basel[i*n2 + j]

where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.

The new matrix is only a view of the array base. When the view goes out of scope
the original array base will continue to exist. The original memory can only be

deallocated by freeing the original array. Of course, the original array should not be
deallocated while the view is still in use.

The function gsl_matrix_const_view_array is equivalent to gsl_matrix_view_
array but can be used for matrices which are declared const.

gsl_matrix_view gsl matrix_view_array_with_tda (double * Function
base, size_t nl, size_t n2, size_t tda)
gsl_matrix_const_view gsl matrix_const_view_array_with_tda Function

(const double * base, size_t nl, size_t n2, size_t tda)
These functions return a matrix view of the array base with a physical number of
columns tda which may differ from corresponding the dimension of the matrix. The
matrix has nl rows and n2 columns, and the physical number of columns in memory
is given by tda. Mathematically, the (i,j)-th element of the new matrix is given by,
m’ (i,j) = basel[i*tda + j]
where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.

The new matrix is only a view of the array base. When the view goes out of scope
the original array base will continue to exist. The original memory can only be
deallocated by freeing the original array. Of course, the original array should not be
deallocated while the view is still in use.

The function gsl_matrix_const_view_array_with_tda is equivalent to gsl_
matrix_view_array_with_tda but can be used for matrices which are declared

const.
gsl_matrix_view gsl matrix_view_vector (gsl_vector * v, Function
size_t nl, size_t n2)
gsl_matrix_const_view gsl.matrix_const_view_vector (const Function

gsl_vector * v, size_t nl, size_t n2)
These functions return a matrix view of the vector v. The matrix has nl rows and
n2 columns. The vector must have unit stride. The physical number of columns in
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memory is also given by n2. Mathematically, the (i,j)-th element of the new matrix
is given by,

m’(i,j) = v->datali*n2 + j]
where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
The new matrix is only a view of the vector v. When the view goes out of scope the
original vector v will continue to exist. The original memory can only be deallocated
by freeing the original vector. Of course, the original vector should not be deallocated
while the view is still in use.
The function gsl_matrix_const_view_vector is equivalent to gsl_matrix_view_
vector but can be used for matrices which are declared const.

gsl_matrix_view gsl matrix_view_vector_with_tda (gsl_vector Function
* v, size_t nl, size_t n2, size_t tda)
gsl_matrix_const_view Function

gsl_matrix_const_view_vector_with_tda (const gsl_vector * v,
size_t nl, size_t n2, size_t tda)
These functions return a matrix view of the vector v with a physical number of
columns tda which may differ from the corresponding matrix dimension. The vector
must have unit stride. The matrix has nl rows and n2 columns, and the physical
number of columns in memory is given by tda. Mathematically, the (i,j)-th element
of the new matrix is given by,

m’ (i,j) = v->datali*tda + j]
where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.

The new matrix is only a view of the vector v. When the view goes out of scope the
original vector v will continue to exist. The original memory can only be deallocated
by freeing the original vector. Of course, the original vector should not be deallocated
while the view is still in use.

The function gsl_matrix_const_view_vector_with_tda is equivalent to
gsl_matrix_view_vector_with_tda but can be used for matrices which are
declared const.

8.4.6 Creating row and column views

In general there are two ways to access an object, by reference or by copying. The
functions described in this section create vector views which allow access to a row or column
of a matrix by reference. Modifying elements of the view is equivalent to modifying the
matrix, since both the vector view and the matrix point to the same memory block.

gsl_vector_view gsl matrix_row (gsl_matrix * m, size_t i) Function
gsl_vector_const_view gsl matrix_const_row (const gsl_matrix Function
* m, size_t i)
These functions return a vector view of the i-th row of the matrix m. The data
pointer of the new vector is set to null if i is out of range.

The function gsl_vector_const_row is equivalent to gsl_matrix_row but can be
used for matrices which are declared const.
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gsl_vector_view gsl matrix_column (gsl_matrix *x m, size_t j) Function
gsl_vector_const_view gsl-matrix_const_column (const Function
gsl_matrix * m, size_t j)
These functions return a vector view of the j-th column of the matrix m. The data
pointer of the new vector is set to null if j is out of range.

The function gsl_vector_const_column equivalent to gsl_matrix_column but can
be used for matrices which are declared const.

gsl_vector_view gsl matrix_diagonal (gsl_matrix * m) Function
gsl_vector_const_view gsl_matrix_const_diagonal (const Function
gsl_matrix * m)
These functions returns a vector view of the diagonal of the matrix m. The matrix
m is not required to be square. For a rectangular matrix the length of the diagonal
is the same as the smaller dimension of the matrix.
The function gsl_matrix_const_diagonal is equivalent to gsl_matrix_diagonal
but can be used for matrices which are declared const.

gsl_vector_view gsl matrix_subdiagonal (gsl_matrix * m, Function
size_t k)
gsl_vector_const_view gsl matrix_const_subdiagonal (const Function

gsl_matrix * m, size_t k)
These functions return a vector view of the k-th subdiagonal of the matrix m. The
matrix m is not required to be square. The diagonal of the matrix corresponds to
k=0.
The function gsl_matrix_const_subdiagonal is equivalent to gsl_matrix_
subdiagonal but can be used for matrices which are declared const.

gsl_vector_view gsl matrix_superdiagonal (gsl_matrix * m, Function
size_t k)
gsl_vector_const_view gsl matrix_const_superdiagonal (const Function

gsl_matrix * m, size_t k)
These functions return a vector view of the k-th superdiagonal of the matrix m. The
matrix m is not required to be square. The diagonal of the matrix corresponds to
k=0.
The function gsl_matrix_const_superdiagonal is equivalent to gsl_matrix_
superdiagonal but can be used for matrices which are declared const.

8.4.7 Copying matrices

int gsl matrix_memcpy (gsl_matrix * dest, const gsl_matrix * Function
src)
This function copies the elements of the matrix src into the matrix dest. The two
matrices must have the same size.

int gsl matrix_swap (gsl_matrix * ml, const gsl_matrix * m2) Function
This function exchanges the elements of the matrices m1 and m2 by copying. The
two matrices must have the same size.
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8.4.8 Copying rows and columns

The functions described in this section copy a row or column of a matrix into a vector.
This allows the elements of the vector and the matrix to be modified independently. Note
that if the matrix and the vector point to overlapping regions of memory then the result
will be undefined. The same effect can be achieved with more generality using gs1_vector_
memcpy with vector views of rows and columns.

int gsl matrix_get_row (gsl_vector * v, const gsl_matrix * m, Function
size_t i)
This function copies the elements of the i-th row of the matrix m into the vector v.
The length of the vector must be the same as the length of the row.

int gsl matrix_get_col (gsl_vector * v, const gsl_matrix * m, Function
size_t j)
This function copies the elements of the i-th column of the matrix m into the vector
v. The length of the vector must be the same as the length of the column.

int gsl matrix_set_row (gsl_matrix * m, size_t i, const Function
gsl_vector * v)
This function copies the elements of the vector v into the i-th row of the matrix m.
The length of the vector must be the same as the length of the row.

int gsl matrix_set_col (gsl_matrix * m, size_t j, const Function
gsl_vector * v)
This function copies the elements of the vector v into the i-th column of the matrix
m. The length of the vector must be the same as the length of the column.

8.4.9 Exchanging rows and columns

The following functions can be used to exchange the rows and columns of a matrix.

int gsl_matrix_swap._rows (gsl_matrix * m, size_t i, size_t j) Function
This function exchanges the i-th and j-th rows of the matrix m in-place.

int gsl matrix_swap_columns (gsl_matrix * m, size_t i, size_t Function

J)

This function exchanges the i-th and j-th columns of the matrix m in-place.

int gsl matrix_swap_rowcol (gsl_matrix * m, size_t i, size_t j) Function

This function exchanges the i-th row and j-th column of the matrix m in-place. The
matrix must be square for this operation to be possible.

int gsl_matrix_transpose_memcpy (gsl_matrix * dest, Function
gsl_matrix * src)
This function makes the matrix dest the transpose of the matrix src by copying the
elements of src into dest. This function works for all matrices provided that the
dimensions of the matrix dest match the transposed dimensions of the matrix src.
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int gsl matrix_transpose (gsl_matrix * m) Function
This function replaces the matrix m by its transpose by copying the elements of the
matrix in-place. The matrix must be square for this operation to be possible.

8.4.10 Matrix operations

The following operations are only defined for real matrices.

int gsl matrix_add (gsl_matrix * a, const gsl_matrix * b) Function
This function adds the elements of matrix b to the elements of matrix a, a'(i,j) =
a(i,j) + b(i,7). The two matrices must have the same dimensions.

int gsl matrix_sub (gsl_matrix * a, const gsl_matrix * b) Function
This function subtracts the elements of matrix b from the elements of matrix a,
a'(i,7) = a(i,j) — b(i, 7). The two matrices must have the same dimensions.

int gsl matrix_mul_elements (gsl_matrix * a, const gsl_matrix Function
* b)
This function multiplies the elements of matrix a by the elements of matrix b, a’(7, j) =
a(i,j) *b(i,j). The two matrices must have the same dimensions.

int gsl matrix_div_elements (gsl_matrix * a, const gsl_matrix * Function
b)
This function divides the elements of matrix a by the elements of matrix b, a’(i,j) =
a(i,7)/b(i,7). The two matrices must have the same dimensions.

int gsl matrix_scale (gsl_matrix * a, const double x) Function
This function multiplies the elements of matrix a by the constant factor x, a’(i,j) =
za(i,j).

int gsl matrix_add_constant (gsl_matrix * a, const double x) Function
This function adds the constant value x to the elements of the matrix a, a'(i,j) =
ali, ) + .

8.4.11 Finding maximum and minimum elements of matrices

double gsl_matrix_max (const gsl_matrix * m) Function
This function returns the maximum value in the matrix m.

double gsl matrix_min (const gsl_matrix * m) Function
This function returns the minimum value in the matrix m.

void gsl matrix_minmax (const gsl_matrix * m, double * Function
min_out, double * max_out)
This function returns the minimum and maximum values in the matrix m, storing
them in min_out and max_out.
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void gsl matrix_max_index (const gsl_matrix * m, size_t * Function
imax, size_t * jmax)
This function returns the indices of the maximum value in the matrix m, storing them
in imax and jmax. When there are several equal maximum elements then the first
element found is returned.

void gsl matrix_min_index (const gsl_matrix * m, size_t * Function
imax, size_t * jmax)
This function returns the indices of the minimum value in the matrix m, storing them
in imax and jmax. When there are several equal minimum elements then the first
element found is returned.

void gsl matrix_minmax_index (const gsl_matrix * m, size_t * Function
imin, size_t * imax)
This function returns the indices of the minimum and maximum values in the ma-
trix m, storing them in (imin,jmin) and (imax,jmax). When there are several equal
minimum or maximum elements then the first elements found are returned.

8.4.12 Matrix properties

int gsl matrix_isnull (const gsl_matrix * m) Function
This function returns 1 if all the elements of the matrix m are zero, and 0 otherwise.

8.4.13 Example programs for matrices

The program below shows how to allocate, initialize and read from a matrix using the
functions gsl_matrix_alloc, gsl_matrix_set and gsl_matrix_get.

#include <stdio.h>
#include <gsl/gsl_matrix.h>

int
main (void)
{

int i, j;

gsl_matrix * m = gsl_matrix_alloc (10, 3);

for (i = 0; i < 10; i++)
for (j = 0; j < 3; j++)
gsl_matrix_set (m, i, j, 0.23 + 100*i + j);

for (i = 0; i < 100; i++)
for (j = 0; j < 3; j++)
printf ("m(%d,%d) = %g\n", i, j,
gsl_matrix_get (m, i, j));

return O;
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Here is the output from the program. The final loop attempts to read outside the range of
the matrix m, and the error is trapped by the range-checking code in gsl_matrix_get.

m(0,0) 0.23

m(0,1) = 1.23
m(0,2) = 2.23

m(1,0) = 100.23
m(1,1) = 101.23
m(1,2) = 102.23

m(9,2) = 902.23
gsl: matrix_source.c:13: ERROR: first index out of range
I0T trap/Abort (core dumped)

The next program shows how to write a matrix to a file.

#include <stdio.h>
#include <gsl/gsl_matrix.h>

int

main (void)

{
int i, j, k = 0;
gsl_matrix * m
gsl_matrix * a

gsl_matrix_alloc (100, 100);
gsl_matrix_alloc (100, 100);

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
gsl_matrix_set (m, i, j, 0.23 + i + j);

{
FILE * f = fopen("test.dat", "w");
gsl_matrix_fwrite (f, m);
fclose (f);

}

{
FILE * f = fopen("test.dat", "r");
gsl_matrix_fread (f, a);
fclose (f);

}

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)

{
double mij = gsl_matrix_get(m, i, j);
double aij = gsl_matrix_get(a, i, j);
if (mij !'= aij) k++;

3

printf ("differences = Jd (should be zero)\n", k);
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return (k > 0);

¥

After running this program the file ‘test.dat’ should contain the elements of m, written
in binary format. The matrix which is read back in using the function gsl_matrix_fread
should be exactly equal to the original matrix.

The following program demonstrates the use of vector views. The program computes
the column-norms of a matrix.
#include <math.h>
#include <stdio.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

int
main (void)
{

size_t 1i,j;

gsl_matrix *m = gsl_matrix_alloc (10, 10);

for (i = 0; i < 10; i++)
for (j = 0; j < 10; j++)
gsl_matrix_set (m, i, j, sin (i) + cos (j));

for (j = 0; j < 10; j++)

{
gsl_vector_view column = gsl_matrix_column (m, j);
double d;
d = gsl_blas_dnrm2 (&column.vector);
printf ("matrix column %d, norm = %g\n", j, 4);
}
gsl_matrix_free (m);
}
Here is the output of the program, which can be confirmed using GNU OCTAVE,
$ ./a.out
matrix column O, norm = 4.31461
matrix column 1, norm = 3.1205
matrix column 2, norm = 2.19316
matrix column 3, norm = 3.26114
matrix column 4, norm = 2.53416
matrix column 5, norm = 2.57281
matrix column 6, norm = 4.20469
matrix column 7, norm = 3.65202
matrix column 8, norm = 2.08524
matrix column 9, norm = 3.07313

-
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octave> m = sin(0:9)’ * ones(1,10)

+ ones(10,1) * cos(0:9);
octave> sqrt(sum(m."2))
ans =

4.3146 3.1205 2.1932 3.2611 2.5342 2.5728
4.2047 3.6520 2.0852 3.0731

8.5 References and Further Reading

The block, vector and matrix objects in GSL follow the valarray model of C++. A descrip-
tion of this model can be found in the following reference,

B. Stroustrup, The C++ Programming Language (3rd Ed), Section 22.4 Vector Arith-
metic. Addison-Wesley 1997, ISBN 0-201-88954-4.
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9 Permutations

This chapter describes functions for creating and manipulating permutations. A permu-
tation p is represented by an array of n integers in the range 0 .. n — 1, where each value
p; occurs once and only once. The application of a permutation p to a vector v yields a
new vector v’ where v, = v,,. For example, the array (0,1, 3,2) represents a permutation
which exchanges the last two elements of a four element vector. The corresponding identity
permutation is (0, 1,2, 3).

Note that the permutations produced by the linear algebra routines correspond to the
exchange of matrix columns, and so should be considered as applying to row-vectors in the
form v’ = vP rather than column-vectors, when permuting the elements of a vector.

The functions described in this chapter are defined in the header file
‘gsl_permutation.h’.

9.1 The Permutation struct

A permutation is stored by a structure containing two components, the size of the per-
mutation and a pointer to the permutation array. The elements of the permutation array
are all of type size_t. The gsl_permutation structure looks like this,

typedef struct
{

size_t size;
size_t * data;
} gsl_permutation;

9.2 Permutation allocation

gsl_permutation * gsl_permutation_alloc (size_t n) Function
This function allocates memory for a new permutation of size n. The permutation is
not initialized and its elements are undefined. Use the function gsl_permutation_
calloc if you want to create a permutation which is initialized to the identity. A null
pointer is returned if insufficient memory is available to create the permutation.

gsl_permutation * gsl permutation_calloc (size_t n) Function
This function allocates memory for a new permutation of size n and initializes it to
the identity. A null pointer is returned if insufficient memory is available to create
the permutation.

void gsl_permutation_init (gsl_permutation * p) Function
This function initializes the permutation p to the identity, i.e. (0,1,2,....,n — 1).

void gsl_permutation_free (gsl_permutation * p) Function
This function frees all the memory used by the permutation p.
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int gsl_permutation_memcpy (gsl_permutation * dest, const Function
gsl_permutation * src)
This function copies the elements of the permutation src into the permutation dest.
The two permutations must have the same size.

9.3 Accessing permutation elements

The following functions can be used to access and manipulate permutations.

size_t gsl_ permutation_get (const gsl_permutation * p, const Function
size_t i)
This function returns the value of the i-th element of the permutation p. If i lies
outside the allowed range of 0 to n-1 then the error handler is invoked and 0 is
returned.

int gsl_permutation_swap (gsl_permutation * p, const size_t i, Function
const size_t j)
This function exchanges the i-th and j-th elements of the permutation p.

9.4 Permutation properties

size_t gsl_permutation_size (const gsl_permutation * p) Function
This function returns the size of the permutation p.

size_t * gsl_ permutation_data (const gsl_permutation * p) Function
This function returns a pointer to the array of elements in the permutation p.

int gsl permutation_valid (gsl_permutation * p) Function
This function checks that the permutation p is valid. The n elements should contain
each of the numbers 0 .. n-1 once and only once.

9.5 Permutation functions

void gsl_permutation_reverse (gsl_permutation * p) Function
This function reverses the elements of the permutation p.

int gsl_permutation_inverse (gsl_permutation * inv, const Function
gsl_permutation * p)
This function computes the inverse of the permutation p, storing the result in inv.

int gsl_permutation_next (gsl_permutation * p) Function
This function advances the permutation p to the next permutation in lexicographic
order and returns GSL_SUCCESS. If no further permutations are available it returns
GSL_FAILURE and leaves p unmodified. Starting with the identity permutation and
repeatedly applying this function will iterate through all possible permutations of a
given order.
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int gsl_permutation_prev (gsl_permutation * p) Function
This function steps backwards from the permutation p to the previous permutation in
lexicographic order, returning GSL_SUCCESS. If no previous permutation is available
it returns GSL_FAILURE and leaves p unmodified.

9.6 Applying Permutations

int gsl_permute (const size_t * p, double * data, size_t stride, Function
size_t n)
This function applies the permutation p to the array data of size n with stride stride.

int gsl_permute_inverse (const size_t * p, double * data, size_t Function
stride, size_t n)
This function applies the inverse of the permutation p to the array data of size n with
stride stride.

int gsl_permute_vector (const gsl_permutation * p, gsl_vector * Function
v)
This function applies the permutation p to the elements of the vector v, considered
as a row-vector acted on by a permutation matrix from the right, v" = vP. The j-th
column of the permutation matrix P is given by the p;-th column of the identity
matrix. The permutation p and the vector v must have the same length.

int gsl_permute_vector_inverse (const gsl_permutation * p, Function
gsl_vector * v)

This function applies the inverse of the permutation p to the elements of the vector
v, considered as a row-vector acted on by an inverse permutation matrix from the
right, v = vP?. Note that for permutation matrices the inverse is the same as
the transpose. The j-th column of the permutation matrix P is given by the p,-th
column of the identity matrix. The permutation p and the vector v must have the
same length.

int gsl_permutation_mul (gsl_permutation * p, const Function
gsl_permutation * pa, const gsl_permutation * pb)
This function combines the two permutations pa and pb into a single permutation p,
where p = pa.pb. The permutation p is equivalent to applying pb first and then pa.

9.7 Reading and writing permutations

The library provides functions for reading and writing permutations to a file as binary
data or formatted text.

int gsl permutation_fwrite (FILE * stream, const Function
gsl_permutation * p)
This function writes the elements of the permutation p to the stream stream in binary
format. The function returns GSL_EFAILED if there was a problem writing to the file.
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Since the data is written in the native binary format it may not be portable between
different architectures.

int gsl_permutation_fread (FILE * stream, gsl_permutation * p) Function
This function reads into the permutation p from the open stream stream in binary
format. The permutation p must be preallocated with the correct length since the
function uses the size of p to determine how many bytes to read. The function returns
GSL_EFAILED if there was a problem reading from the file. The data is assumed to
have been written in the native binary format on the same architecture.

int gsl_permutation_fprintf (FILE * stream, const Function
gsl_permutation * p, const char *format)
This function writes the elements of the permutation p line-by-line to the stream
stream using the format specifier format, which should be suitable for a type of size_t.
On a GNU system the type modifier Z represents size_t, so "%Zu\n" is a suitable
format. The function returns GSL_EFAILED if there was a problem writing to the file.

int gsl_permutation_fscanf (FILE * stream, gsl_permutation * p) Function
This function reads formatted data from the stream stream into the permutation p.
The permutation p must be preallocated with the correct length since the function
uses the size of p to determine how many numbers to read. The function returns
GSL_EFAILED if there was a problem reading from the file.

9.8 Permutations in Cyclic Form

A permutation can be represented in both linear and cyclic notations. The functions
described in this section can be used to convert between the two forms.

The linear notation is an index mapping, and has already been described above. The
cyclic notation represents a permutation as a series of circular rearrangements of groups of
elements, or cycles.

Any permutation can be decomposed into a combination of cycles. For example, under
the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by 3 and 3 is replaced by 1 in a circular
fashion. Cycles of different sets of elements can be combined independently, for example (1
2 3) (4 5) combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of elements 4
and 5. A cycle of length one represents an element which is unchanged by the permutation
and is referred to as a singleton.

The cyclic notation for a permutation is not unique, but can be rearranged into a unique
canonical form by a reordering of elements. The library uses the canonical form defined in
Knuth’s Art of Computer Programming (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.

The procedure for obtaining the canonical form given by Knuth is,
1. Write all singleton cycles explicitly
2. Within each cycle, put the smallest number first

3. Order the cycles in decreasing order of the first number in the cycle.
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For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical
form. The permutation corresponds to an exchange of elements 1 and 4, and rotation of
elements 0, 2 and 3.

The important property of the canonical form is that it can be reconstructed from the
contents of each cycle without the brackets. In addition, by removing the brackets it can
be considered as a linear representation of a different permutation. In the example given
above the permutation (2 4 3 0 1) would become (1 4 0 2 3). This mapping between
linear permutations defined by the canonical form has many important uses in the theory
of permutations.

int gsl_permutation_linear_to_canonical (gsl_permutation * g, Function
const gsl_permutation * p)
This function computes the canonical form of the permutation p and stores it in the
output argument q.

int gsl_permutation_canonical to_linear (gsl_permutation * p, Function
const gsl_permutation * q)
This function converts a permutation ¢ in canonical form back into linear form storing
it in the output argument p.

size_t gsl_permutation_inversions (const gsl_permutation * p) Function
This function counts the number of inversions in the permutation p.

size_t gsl_permutation_linear_cycles (const gsl_permutation * Function

p)
This function counts the number of cycles in the permutation p.

size_t gsl permutation_canonical _cycles (const Function
gsl_permutation * q)
This function counts the number of cycles in the permutation g, where ¢ is given in
canonical form.

9.9 Examples

The example program below creates a random permutation by shuffling and finds its
inverse.

#include <stdio.h>

#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_permutation.h>

int

main (void)

{
const size_t N = 10;
const gsl_rng_type * T;
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gsl_rng * r;

gsl_permutation * p = gsl_permutation_alloc (N);
gsl_permutation * q = gsl_permutation_alloc (N);

gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc (T);

printf("initial permutation:");
gsl_permutation_init (p);
gsl_permutation_fprintf (stdout, p, " %u");
printf ("\n");

printf (" random permutation:");

gsl_ran_shuffle (r, p->data, N, sizeof(size_t));
gsl_permutation_fprintf (stdout, p, " %u");
printf("\n");

printf ("inverse permutation:");
gsl_permutation_inverse (q, p);
gsl_permutation_fprintf (stdout, q, " %u");
printf ("\n");

return O;

}

Here is the output from the program,

bash$ ./a.out

initial permutation: 0 1 23 456 7 8 9
random permutation: 1 3 5627 6 0 4 9 8
inverse permutation: 6 0 3 17 25 4 9 8

4 8
7 9
The random permutation p[i] and its inverse q[i] are related through the identity p [q[i]]
= i, which can be verified from the output.

The next example program steps forwards through all possible 3-rd order permutations,
starting from the identity,

#include <stdio.h>
#include <gsl/gsl_permutation.h>

int
main (void)
{

gsl_permutation * p = gsl_permutation_alloc (3);
gsl_permutation_init (p);
do

{
gsl_permutation_fprintf (stdout, p, " %u");
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}

}

printf("\n");

while (gsl_permutation_next(p) == GSL_SUCCESS) ;

return O;

Here is the output from the program,
bash$ ./a.out

0

N == O
= O N ON

2

1

= ON R~ N

0

All 6 permutations are generated in lexicographic order. To reverse the sequence, begin with
the final permutation (which is the reverse of the identity) and replace gsl_permutation_
next with gsl_permutation_prev.

9.10 References and Further Reading

The subject of permutations is covered extensively in Knuth’s Sorting and Searching,

Donald E. Knuth, The Art of Computer Programming: Sorting and Searching (Vol 3,
3rd Ed, 1997), Addison-Wesley, ISBN 0201896850.

For the definition of the canonical form see,

Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms (Vol
1, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. Section 1.3.3, An Unusual Cor-
respondence, p.178-179.
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10 Combinations

This chapter describes functions for creating and manipulating combinations. A combi-
nation c is represented by an array of k integers in the range 0 .. n — 1, where each value
¢; is from the range 0 .. n — 1 and occurs at most once. The combination ¢ corresponds to
indices of k elements chosen from an n element vector. Combinations are useful for iterating
over all k-element subsets of a set.

The functions described in this chapter are defined in the header file
‘gsl_combination.h’.

10.1 The Combination struct

A combination is stored by a structure containing three components, the values of n and
k, and a pointer to the combination array. The elements of the combination array are all
of type size_t, and are stored in increasing order. The gsl_combination structure looks
like this,
typedef struct
{
size_t n;
size_t k;
size_t *data;
} gsl_combination;

10.2 Combination allocation

gsl_combination * gsl combination_alloc (size_t n, size_t k) Function
This function allocates memory for a new combination with parameters n, k. The
combination is not initialized and its elements are undefined. Use the function gsl_
combination_calloc if you want to create a combination which is initialized to the
lexicographically first combination. A null pointer is returned if insufficient memory
is available to create the combination.

gsl_combination * gsl_combination_calloc (size_t n) Function
This function allocates memory for a new combination with parameters n, k and
initializes it to the lexicographically first combination. A null pointer is returned if
insufficient memory is available to create the combination.

void gsl_combination_init_first (gsl_combination * c) Function
This function initializes the combination ¢ to the lexicographically first combination,
ie. (0,1,2,...k—1).

void gsl_combination_init_last (gsl_combination * c) Function
This function initializes the combination ¢ to the lexicographically last combination,
ie. (n—kn—k+1,.,n—1).

void gsl_combination_free (gsl_combination * c) Function
This function frees all the memory used by the combination c.
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10.3 Accessing combination elements

The following function can be used to access combinations elements.

size_t gsl_combination_get (const gsl_combination * ¢, const Function
size_t i)
This function returns the value of the i-th element of the combination c. If i lies
outside the allowed range of 0 to k-1 then the error handler is invoked and 0 is
returned.

10.4 Combination properties

size_t gsl_ combination_n (const gsl_combination * c) Function
This function returns the n parameter of the combination c.

size_t gsl combination_k (const gsl_combination * c) Function
This function returns the k& parameter of the combination c.

size_t * gsl_ combination_data (const gsl_combination * c) Function
This function returns a pointer to the array of elements in the combination c.

int gsl_combination_valid (gsl_combination * ¢) Function
This function checks that the combination c is valid. The k elements should contain
numbers from range 0 .. n-1, each number at most once. The numbers have to be in
increasing order.

10.5 Combination functions

int gsl_combination_next (gsl_combination * c) Function
This function advances the combination ¢ to the next combination in lexicographic
order and returns GSL_SUCCESS. If no further combinations are available it returns
GSL_FAILURE and leaves ¢ unmodified. Starting with the fisrst combination and
repeatedly applying this function will iterate through all possible combinations of a
given order.

int gsl_combination_prev (gsl_combination * c) Function
This function steps backwards from the combination ¢ to the previous combination in
lexicographic order, returning GSL_SUCCESS. If no previous combination is available
it returns GSL_FAILURE and leaves ¢ unmodified.
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10.6 Reading and writing combinations

The library provides functions for reading and writing combinations to a file as binary
data or formatted text.

int gsl_combination_fwrite (FILE * stream, const Function
gsl_combination * c)
This function writes the elements of the combination ¢ to the stream stream in binary
format. The function returns GSL_EFAILED if there was a problem writing to the file.
Since the data is written in the native binary format it may not be portable between
different architectures.

int gsl_combination_fread (FILE * stream, gsl_combination * c) Function
This function reads into the combination ¢ from the open stream stream in binary
format. The combination ¢ must be preallocated with correct values of n and k since
the function uses the size of ¢ to determine how many bytes to read. The function
returns GSL_EFAILED if there was a problem reading from the file. The data is assumed
to have been written in the native binary format on the same architecture.

int gsl_combination_fprintf (FILE * stream, const Function
gsl_combination * ¢, const char *format)
This function writes the elements of the combination ¢ line-by-line to the stream
stream using the format specifier format, which should be suitable for a type of size_t.
On a GNU system the type modifier Z represents size_t, so "%Zu\n" is a suitable
format. The function returns GSL_EFAILED if there was a problem writing to the file.

int gsl_.combination_fscanf (FILE * stream, gsl_combination * c) Function
This function reads formatted data from the stream stream into the combination c.
The combination ¢ must be preallocated with correct values of n and k since the
function uses the size of ¢ to determine how many numbers to read. The function
returns GSL_EFAILED if there was a problem reading from the file.

10.7 Examples

The example program below prints all subsets of the set {1,2,3,4} ordered by size.
Subsets of the same size are ordered lexicographically.

#include <stdio.h>
#include <gsl/gsl_combination.h>

int

main (void)

{
gsl_combination * c;
size_t i;

printf ("All subsets of {0,1,2,3} by size:\n") ;
for(i = 0; i <= 4; i++)
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¢ = gsl_combination_calloc (4, i);
do
{
printf ("{");
gsl_combination_fprintf (stdout, c, " %u");
printf (" F\n");
}
while (gsl_combination_next(c) == GSL_SUCCESS);
gsl_combination_free(c);

}

return O;
}
Here is the output from the program,

bash$ ./a.out
A1l subsets of {0,1,2,3} by size:

PN R R WWNWN R Y Y oo
e e a]

e e el e T e T e W e e e e e
ORP OO0OONRFRRPLPOOOWNEROWY
N WWWwNSY Y

31}

All 16 subsets are generated, and the subsets of each size are sorted lexicographically.
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11 Sorting

This chapter describes functions for sorting data, both directly and indirectly (using an
index). All the functions use the heapsort algorithm. Heapsort is an O(N log N) algorithm
which operates in-place. It does not require any additional storage and provides consistent
performance. The running time for its worst-case (ordered data) is not significantly longer
than the average and best cases. Note that the heapsort algorithm does not preserve the
relative ordering of equal elements — it is an unstable sort. However the resulting order of
equal elements will be consistent across different platforms when using these functions.

11.1 Sorting objects

The following function provides a simple alternative to the standard library function
gsort. It is intended for systems lacking gsort, not as a replacement for it. The function
gsort should be used whenever possible, as it will be faster and can provide stable ordering
of equal elements. Documentation for gsort is available in the GNU C Library Reference
Manual.

The functions described in this section are defined in the header file ‘gsl_heapsort.h’.

void gsl_heapsort (void * array, size_t count, size_t size, Function
gsl_comparison_fn_t compare)
This function sorts the count elements of the array array, each of size size, into
ascending order using the comparison function compare. The type of the comparison
function is defined by,

int (*gsl_comparison_fn_t) (const void * a,
const void * b)

A comparison function should return a negative integer if the first argument is less
than the second argument, 0 if the two arguments are equal and a positive integer if
the first argument is greater than the second argument.

For example, the following function can be used to sort doubles into ascending nu-
merical order.
int
compare_doubles (const double * a,
const double * b)
{
if (xa > *b)
return 1;
else if (*a < *b)
return -1;
else
return O;

¥

The appropriate function call to perform the sort is,

gsl_heapsort (array, count, sizeof (double),
compare_doubles) ;
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Note that unlike gsort the heapsort algorithm cannot be made into a stable sort by
pointer arithmetic. The trick of comparing pointers for equal elements in the com-
parison function does not work for the heapsort algorithm. The heapsort algorithm
performs an internal rearrangement of the data which destroys its initial ordering.

int gsl _heapsort_index (size_t * p, const void * array, size_t Function

count, size_t size, gsl_comparison_fn_t compare)
This function indirectly sorts the count elements of the array array, each of size
size, into ascending order using the comparison function compare. The resulting
permutation is stored in p, an array of length n. The elements of p give the index
of the array element which would have been stored in that position if the array had
been sorted in place. The first element of p gives the index of the least element in
array, and the last element of p gives the index of the greatest element in array. The
array itself is not changed.

11.2 Sorting vectors

The following functions will sort the elements of an array or vector, either directly or in-
directly. They are defined for all real and integer types using the normal suffix rules. For ex-
ample, the float versions of the array functions are gsl_sort_float and gsl_sort_float_
index. The corresponding vector functions are gsl_sort_vector_float and gsl_sort_
vector_float_index. The prototypes are available in the header files ‘gs1l_sort_float.h’
‘gsl_sort_vector_float.h’. The complete set of prototypes can be included using the
header files ‘gsl_sort.h’ and ‘gsl_sort_vector.h’.

There are no functions for sorting complex arrays or vectors, since the ordering of com-
plex numbers is not uniquely defined. To sort a complex vector by magnitude compute a real
vector containing the magnitudes of the complex elements, and sort this vector indirectly.
The resulting index gives the appropriate ordering of the original complex vector.

void gsl_sort (double * data, size_t stride, size_t n) Function
This function sorts the n elements of the array data with stride stride into ascending
numerical order.

void gsl_sort_vector (gsl_vector * v) Function
This function sorts the elements of the vector v into ascending numerical order.

int gsl sort_index (size_t * p, const double * data, size_t stride, Function
size_t n)
This function indirectly sorts the n elements of the array data with stride stride into
ascending order, storing the resulting permutation in p. The array p must be allocated
to a sufficient length to store the n elements of the permutation. The elements of p
give the index of the array element which would have been stored in that position if
the array had been sorted in place. The array data is not changed.
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int gsl sort_vector_index (gsl_permutation * p, const Function
gsl_vector * v)
This function indirectly sorts the elements of the vector v into ascending order, storing
the resulting permutation in p. The elements of p give the index of the vector element
which would have been stored in that position if the vector had been sorted in place.
The first element of p gives the index of the least element in v, and the last element
of p gives the index of the greatest element in v. The vector v is not changed.

11.3 Selecting the k-th smallest or largest elements

The functions described in this section select the k-th smallest or largest elements of a
data set of size N. The routines use an O(kN) direct insertion algorithm which is suited
to subsets that are small compared with the total size of the dataset. For example, the
routines are useful for selecting the 10 largest values from one million data points, but
not for selecting the largest 100,000 values. If the subset is a significant part of the total
dataset it may be faster to sort all the elements of the dataset directly with an O(N log N)
algorithm and obtain the smallest or largest values that way.

void gsl_sort_smallest (double * dest, size_t k, const double * Function
src, size_t stride, size_t n)
This function copies the k-th smallest elements of the array src, of size n and stride
stride, in ascending numerical order in dest. The size of the subset k must be less
than or equal to n. The data src is not modified by this operation.

void gsl_sort_largest (double * dest, size_t k, const double * src, Function
size_t stride, size_t n)
This function copies the k-th largest elements of the array src, of size n and stride
stride, in descending numerical order in dest. The size of the subset k must be less
than or equal to n. The data src is not modified by this operation.

void gsl_sort_vector_smallest (double * dest, size_t k, const Function
gsl_vector * v)
void gsl_sort_vector_largest (double * dest, size_t k, const Function

gsl_vector * v)
These functions copy the k-th smallest or largest elements of the vector v into the
array dest. The size of the subset k must be less than or equal to the length of the
vector v.

The following functions find the indices of the k-th smallest or largest elements of a
dataset,

void gsl_sort_smallest_index (size_t * p, size_t k, const double Function
* src, size_t stride, size_t n)
This function stores the indices of the k-th smallest elements of the array src, of size
n and stride stride, in the array p. The indices are chosen so that the corresponding
data is in ascending numerical order. The size of the subset k must be less than or
equal to n. The data src is not modified by this operation.
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void gsl_sort_largest_index (size_t * p, size_t k, const double * Function
src, size_t stride, size_t n)
This function stores the indices of the k-th largest elements of the array src, of size
n and stride stride, in the array p. The indices are chosen so that the corresponding
data is in descending numerical order. The size of the subset k must be less than or
equal to n. The data src is not modified by this operation.

void gsl_sort_vector_smallest_index (size_t * p, size_t k, Function
const gsl_vector * v)
void gsl_sort_vector_largest_index (size_t * p, size_t k, const Function

gsl_vector * v)
These functions store the indices of k-th smallest or largest elements of the vector v

in the array p. The size of the subset k must be less than or equal to the length of
the vector v.

11.4 Computing the rank

The rank of an element is its order in the sorted data. The rank is the inverse of the
index permutation, p. It can be computed using the following algorithm,
for (i = 0; i < p->size; i++)
{
size_t pi = p->datalil;
rank->datalpi] = i;
}

This can be computed directly from the function gsl_permutation_inverse(rank,p).

The following function will print the rank of each element of the vector v,

void
print_rank (gsl_vector * v)
{

size_t i;

size_t n = v->size;
gsl_permutation * perm = gsl_permutation_alloc(n);
gsl_permutation * rank = gsl_permutation_alloc(n);

gsl_sort_vector_index (perm, Vv);
gsl_permutation_inverse (rank, perm);

for (i = 0; i < n; i++)
{
double vi = gsl_vector_get(v, i);
printf ("element = Jd, value = %g, rank = %d\n",
i, vi, rank->datalil);

}

gsl_permutation_free (perm);
gsl_permutation_free (rank);
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11.5 Examples

The following example shows how to use the permutation p to print the elements of the
vector v in ascending order,

gsl_sort_vector_index (p, Vv);

for (i = 0; i < v->size; i++)
{
double vpi = gsl_vector_get(v, p->datalil);
printf ("order = %d, value = Y%g\n", i, vpi);
}

The next example uses the function gsl_sort_smallest to select the 5 smallest numbers
from 100000 uniform random variates stored in an array,

#include <gsl/gsl_rng.h>
#include <gsl/gsl_sort_double.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

int i, k = 5, N = 100000;

double * x = malloc (N * sizeof (double));
double * small = malloc (k * sizeof (double));

gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

for (i = 0; i < N; i++)
{
x[i] = gsl_rng_uniform(r);

}
gsl_sort_smallest (small, k, x, 1, N);
printf("%d smallest values from %d\n", k, N);

for (i = 0; i < k; i++)
{
printf ("%d: %.18f\n", i, small[i]);
}

return O;

¥

The output lists the 5 smallest values, in ascending order,
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$ ./a.out

5 smallest values from 100000
0: 0.000005466630682349

1: 0.000012384494766593

2: 0.000017581274732947

3: 0.000025131041184068

4: 0.000031369971111417

11.6 References and Further Reading

The subject of sorting is covered extensively in Knuth’s Sorting and Searching,
Donald E. Knuth, The Art of Computer Programming: Sorting and Searching (Vol 3,
3rd Ed, 1997), Addison-Wesley, ISBN 0201896850.

The Heapsort algorithm is described in the following book,
Robert Sedgewick, Algorithms in C, Addison-Wesley, ISBN 0201514257.
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12 BLAS Support

The Basic Linear Algebra Subprograms (BLAS) define a set of fundamental operations
on vectors and matrices which can be used to create optimized higher-level linear algebra
functionality.

The library provides a low-level layer which corresponds directly to the C-language BLAS
standard, referred to here as “CBLAS”, and a higher-level interface for operations on GSL
vectors and matrices. Users who are interested in simple operations on GSL vector and
matrix objects should use the high-level layer, which is declared in the file gsl_blas.h.
This should satisfy the needs of most users. Note that GSL matrices are implemented using
dense-storage so the interface only includes the corresponding dense-storage BLAS functions.
The full BLAS functionality for band-format and packed-format matrices is available through
the low-level CBLAS interface.

The interface for the gsl_cblas layer is specified in the file gsl_cblas.h. This interface
corresponds the BLAS Technical Forum’s draft standard for the C interface to legacy BLAS
implementations. Users who have access to other conforming CBLAS implementations can
use these in place of the version provided by the library. Note that users who have only
a Fortran BLAS library can use a CBLAS conformant wrapper to convert it into a CBLAS
library. A reference CBLAS wrapper for legacy Fortran implementations exists as part of
the draft ¢BLAS standard and can be obtained from Netlib. The complete set of CBLAS
functions is listed in an appendix (see Appendix D [GSL CBLAS Library], page 404).

There are three levels of BLAS operations,
Level 1 Vector operations, e.g. y =azx +y
Level 2 Matrix-vector operations, e.g. y = aAx + By
Level 3 Matrix-matrix operations, e.g. C = «AB + C

Each routine has a name which specifies the operation, the type of matrices involved and
their precisions. Some of the most common operations and their names are given below,

DOT scalar product, xTy

AXPY vector sum, ax + y

MV matrix-vector product, Ax
SV matrix-vector solve, inv(A)z
MM matrix-matrix product, AB
SM matrix-matrix solve, inv(A)B

The type of matrices are,

GE general

GB general band
SY symmetric

SB symmetric band

SpP symmetric packed
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HE hermitian

HB hermitian band
HP hermitian packed
TR triangular

TB triangular band
TP triangular packed
Each operation is defined for four precisions,
S single real

D double real

C single complex

Z double complex

Thus, for example, the name SGEMM stands for “single-precision general matrix-matrix
multiply” and ZGEMM stands for “double-precision complex matrix-matrix multiply”.

12.1 GSL BLAS Interface

GSL provides dense vector and matrix objects, based on the relevant built-in types. The
library provides an interface to the BLAS operations which apply to these objects. The
interface to this functionality is given in the file gsl_blas.h.

12.1.1 Level 1

int gsl blas_sdsdot (float alpha, const gsl_vector_float * x, Function
const gsl_vector_float * y, float * result)
int gsl blas_dsdot (const gsl_vector_float * x, const Function

gsl_vector_float * y, double * result)
These functions compute the sum a+x7y for the vectors x and y, returning the result

in result.
int gsl blas_sdot (const gsl_vector_float * x, const Function
gsl_vector_float * y, float * result)
int gsl _blas_ddot (const gsl_vector * x, const gsl_vector * y, Function

double * result)
These functions compute the scalar product z7y for the vectors x and y, returning
the result in result.

int gsl blas_cdotu (const gsl_vector_complex_float * x, const Function
gsl_vector_complex_float * y, gsl_complex_float * dotu)
int gsl blas_zdotu (const gsl_vector_complex * x, const Function

gsl_vector_complex * y, gsl_complex * dotu)
These functions compute the complex scalar product x7y for the vectors x and y,
returning the result in result
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int gsl_blas_cdotc (const gsl_vector_complex_float * x, const Function
gsl_vector_complex_float * y, gsl_complex_float * dotc)
int gsl blas_zdotc (const gsl_vector_complex * x, const Function

gsl_vector_complex * y, gsl_complex * dotc)
These functions compute the complex conjugate scalar product 2y for the vectors x
and y, returning the result in result

float gsl_blas_snrm2 (const gsl_vector_float * x) Function
double gsl blas_dnrm2 (const gsl_vector * x) Function
These functions compute the Euclidean norm ||z||, = /Y 7 of the vector x.

float gsl blas_scnrm2 (const gsl_vector_complex_float * x) Function
double gsl_blas_dznrm?2 (const gsl_vector_complex * X) Function
These functions compute the Euclidean norm of the complex vector x,

l2lls = /3 (Re(,)? + Im(x,)?).

float gsl _blas_sasum (const gsl_vector_float * x) Function
double gsl_blas_dasum (const gsl_vector * x) Function
These functions compute the absolute sum ) |z;| of the elements of the vector x.

float gsl _blas_scasum (const gsl_vector_complex_float * x) Function

double gsl_blas_dzasum (const gsl_vector_complex * x) Function
These functions compute the absolute sum ) |Re(z;)| + [Im(z;)| of the elements of
the vector x.

CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * x) Function

CBLAS_INDEX_t gsl _blas_idamax (const gsl_vector * x) Function

CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float Function
* X)

CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * x) Function

These functions return the index of the largest element of the vector x. The largest
element is determined by its absolute magnitude for real vector and by the sum of the
magnitudes of the real and imaginary parts |Re(x;)| + [Im(z;)| for complex vectors. If
the largest value occurs several times then the index of the first occurrence is returned.

int gsl blas_sswap (gsl_vector_float * x, gsl_vector_float * y) Function

int gsl blas_dswap (gsl_vector * x, gsl_vector * y) Function

int gsl_blas_cswap (gsl_vector_complex_float * x, Function
gsl_vector_complex_float * y)

int gsl blas_zswap (gsl_vector_complex * x, gsl_vector_complex Function
*y)

These functions exchange the elements of the vectors x and y.
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int gsl_blas_scopy (const gsl_vector_float * x, gsl_vector_float Function
*y)

int gsl blas_dcopy (const gsl_vector * x, gsl_vector * y) Function

int gsl_blas_ccopy (const gsl_vector_complex_float * x, Function
gsl_vector_complex_float * y)

int gsl_blas_zcopy (const gsl_vector_complex * X, Function

gsl_vector_complex * y)
These functions copy the elements of the vector x into the vector y.

int gsl blas_saxpy (float alpha, const gsl_vector_float * x, Function
gsl_vector_float * y)

int gsl blas_daxpy (double alpha, const gsl_vector * x, Function
gsl_vector * y)

int gsl blas_caxpy (const gsl_complex_float alpha, const Function
gsl_vector_complex_float * x, gsl_vector_complex_float * y)

int gsl blas_zaxpy (const gsl_complex alpha, const Function

gsl_vector_complex * x, gsl_vector_complex * y)
These functions compute the sum y = ax + y for the vectors x and y.

void gsl_blas_sscal (float alpha, gsl_vector_float * x) Function

void gsl_blas_dscal (double alpha, gsl_vector * x) Function

void gsl_blas_cscal (const gsl_complex_float alpha, Function
gsl_vector_complex_float * x)

void gsl_blas_zscal (const gsl_complex alpha, gsl_vector_complex Function
* X)

void gsl_blas_csscal (float alpha, gsl_vector_complex_float * x) Function

void gsl_blas_zdscal (double alpha, gsl_vector_complex * x) Function

These functions rescale the vector x by the multiplicative factor alpha.

int gsl blas_srotg (float a[], float b[], float c[], float sl]) Function
int gsl blas_drotg (double a[], double b[], double c[], double sl]) Function
These functions compute a Givens rotation (¢, s) which zeroes the vector (a, b),
c s\ [a\ [T
() G)=(5)

The variables a and b are overwritten by the routine.

int gsl_blas_srot (gsl_vector_float * x, gsl_vector_float * y, Function
float ¢, float s)
int gsl blas_drot (gsl_vector * x, gsl_vector * y, const double c, Function

const double s)
These functions apply a Givens rotation (2',y') = (cx + sy, —sx + cy) to the vectors

X, Y.

int gsl_blas_srotmg (float di[], float d2[], float bi[], float b2, Function
float P[])

int gsl_blas_drotmg (double di[], double d2[|, double bi[|, double Function

b2, double P[])
These functions compute a modified Given’s transformation.
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int gsl blas_srotm (gsl_vector_float * x, gsl_vector_float * y, Function
const float P[])

int gsl blas_drotm (gsl_vector * x, gsl_vector * y, const double Function
Pll)

These functions apply a modified Given’s transformation.

12.1.2 Level 2

int gsl blas_sgemv (CBLAS_TRANSPOSE_t TransA, float alpha, Function
const gsl_matrix_float * A, const gsl_vector_float * x, float beta,
gsl_vector_float * y)

int gsl blas_dgemv (CBLAS_TRANSPOSE_t TransA, double alpha, Function
const gsl_matrix * A, const gsl_vector * x, double beta, gsl_vector *
y)

int gsl blas_cgemv (CBLAS_TRANSPOSE_t TransA, const Function

gsl_complex_float alpha, const gsl_matrix_complex_float * A, const
gsl_vector_complex_float * x, const gsl_complex_float beta,
gsl_vector_complex_float * y)
int gsl blas_zgemv (CBLAS_TRANSPOSE_t TransA, const Function

gsl_complex alpha, const gsl_matrix_complex * A, const
gsl_vector_complex * x, const gsl_complex beta, gsl_vector_complex *
¥)

These functions compute the matrix-vector product and sum y = aop(A)x+ Py, where

op(A) = A, AT A" for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

int gsl blas_strmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function
TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A,
gsl_vector_float * x)

int gsl_blas_dtrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function
TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * x)
int gsl blas_ctrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function

TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A,
gsl_vector_complex_float * X)
int gsl_blas_ztrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function
TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A,
gsl_vector_complex * X)
These functions compute the matrix-vector product x = aop(A)z for the triangu-
lar matrix A, where op(A) = A, AT, A for TransA = CblasNoTrans, CblasTrans,
CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used,
and when Uplo is CblasLower then the lower triangle of A is used. If Diag is
CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit
then the diagonal elements of the matrix A are taken as unity and are not referenced.
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int gsl blas_strsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, Function
CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * x)

int gsl blas_dtrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function
TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * x)

int gsl_blas_ctrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, Function
CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A,
gsl_vector_complex_float * x)

int gsl blas_ztrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, Function
CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex
*X)

These functions compute inv(op(A))x for x, where op(A) = A, AT, A" for TransA =
CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the
upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of
A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if
Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and
are not referenced.

int gsl blas_ssymv (CBLAS_UPLO_t Uplo, float alpha, const Function
gsl_matrix_float * A, const gsl_vector_float * x, float beta,
gsl_vector_float * y)
int gsl blas_dsymv (CBLAS_UPLO_t Uplo, double alpha, const Function
gsl_matrix * A, const gsl_vector * x, double beta, gsl_vector * y)
These functions compute the matrix-vector product and sum y = a Az + By for the
symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half
need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of
A are used.

int gsl blas_chemv (CBLAS_UPLO_t Uplo, const gsl_complex_float Function
alpha, const gsl_matrix_complex_float * A, const
gsl_vector_complex_float * x, const gsl_complex_float beta,
gsl_vector_complex_float * y)
int gsl_blas_zhemv (CBLAS_UPLO_t Uplo, const gsl_complex alpha, Function
const gsl_matrix_complex * A, const gsl_vector_complex * x, const
gsl_complex beta, gsl_vector_complex * y)
These functions compute the matrix-vector product and sum y = aAx + By for the
hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half
need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of
A are used. The imaginary elements of the diagonal are automatically assumed to be
zero and are not referenced.
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int gsl blas_sger (float alpha, const gsl_vector_float * x, const Function
gsl_vector_float * y, gsl_matrix_float * A)

int gsl blas_dger (double alpha, const gsl_vector * x, const Function
gsl_vector * y, gsl_matrix * A)

int gsl blas_cgeru (const gsl_complex_float alpha, const Function

gsl_vector_complex_float * x, const gsl_vector_complex_float * y,
gsl_matrix_complex_float * A)
int gsl blas_zgeru (const gsl_complex alpha, const Function
gsl_vector_complex * x, const gsl_vector_complex * y,
gsl_matrix_complex * A)
These functions compute the rank-1 update A = azy” + A of the matrix A.

int gsl blas_cgerc (const gsl_complex_float alpha, const Function
gsl_vector_complex_float * x, const gsl_vector_complex_float * y,
gsl_matrix_complex_float * A)
int gsl_blas_zgerc (const gsl_complex alpha, const Function
gsl_vector_complex * x, const gsl_vector_complex * y,
gsl_matrix_complex * A)
These functions compute the conjugate rank-1 update A = azy® + A of the matrix

A.
int gsl blas_ssyr (CBLAS_UPLO_t Uplo, float alpha, const Function
gsl_vector_float * x, gsl_matrix_float * A)
int gsl blas_dsyr (CBLAS_UPLO_t Uplo, double alpha, const Function

gsl_vector * x, gsl_matrix * A)
These functions compute the symmetric rank-1 update A = axz® +A of the symmetric
matrix A. Since the matrix A is symmetric only its upper half or lower half need to
be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are
used, and when Uplo is CblasLower then the lower triangle and diagonal of A are

used.
int gsl blas_cher (CBLAS_UPLO_t Uplo, float alpha, const Function
gsl_vector_complex_float * x, gsl_matrix_complex_float * A)
int gsl blas_zher (CBLAS_UPLO_t Uplo, double alpha, const Function

gsl_vector_complex * x, gsl_matrix_complex * A)
These functions compute the hermitian rank-1 update A = axx + A of the hermitian
matrix A. Since the matrix A is hermitian only its upper half or lower half need to
be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are
used, and when Uplo is CblasLower then the lower triangle and diagonal of A are
used. The imaginary elements of the diagonal are automatically set to zero.
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int gsl blas_ssyr2 (CBLAS_UPLO_t Uplo, float alpha, const Function
gsl_vector_float * x, const gsl_vector_float * y, gsl_matrix_float *
A)

int gsl blas_dsyr2 (CBLAS_UPLO_t Uplo, double alpha, const Function

gsl_vector * x, const gsl_vector * y, gsl_matrix * A)
These functions compute the symmetric rank-2 update A = axy” + ayz? + A of the
symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half
need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of
A are used.

int gsl_blas_cher2 (CBLAS_UPLO_t Uplo, const gsl_complex_float Function
alpha, const gsl_vector_complex_float * x, const
gsl_vector_complex_float * y, gsl_matrix_complex_float * A)
int gsl_blas_zher2 (CBLAS_UPLO_t Uplo, const gsl_complex alpha, Function
const gsl_vector_complex * x, const gsl_vector_complex * y,
gsl_matrix_complex * A)
These functions compute the hermitian rank-2 update A = axy? + a*yxz A of the
hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half
need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of
A are used. The imaginary elements of the diagonal are automatically set to zero.

12.1.3 Level 3

int gsl blas_sgemm (CBLAS_TRANSPOSE_t TransA, Function
CBLAS_TRANSPOSE_t TransB, float alpha, const gsl_matrix_float * A,
const gsl_matrix_float * B, float beta, gsl_matrix_float * C)
int gsl blas_dgemm (CBLAS_TRANSPOSE_t TransA, Function
CBLAS_TRANSPOSE_t TransB, double alpha, const gsl_matrix * A, const
gsl_matrix * B, double beta, gsl_matrix * C)
int gsl blas_cgemm (CBLAS_TRANSPOSE_t TransA, Function
CBLAS_TRANSPOSE_t TransB, const gsl_complex_float alpha, const
gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B,
const gsl_complex_float beta, gsl_matrix_complex_float * C)
int gsl blas_zgemm (CBLAS_TRANSPOSE_t TransA, Function
CBLAS_TRANSPOSE_t TransB, const gsl_complex alpha, const
gsl_matrix_complex * A, const gsl_matrix_complex * B, const
gsl_complex beta, gsl_matrix_complex * C)
These functions compute the matrix-matrix product and sum C' = aop(A)op(B)+ BC
where op(A) = A, AT, AY for TransA = CblasNoTrans, CblasTrans,
CblasConjTrans and similarly for the parameter TransB.
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int gsl_blas_ssymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, float Function
alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float
beta, gsl_matrix_float * C)
int gsl_blas_dsymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta,
gsl_matrix * C)
int gsl blas_csymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const Function
gsl_complex_float alpha, const gsl _matrix_complex_float * A, const
gsl_matrix_complex_float * B, const gsl_complex_float beta,
gsl_matrix_complex_float * C)
int gsl_blas_zsymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const Function
gsl_complex alpha, const gsl_matrix_complex * A, const
gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex *
C)
These functions compute the matrix-matrix product and sum C = aAB + GC for
Side is CblasLeft and C = aBA + BC for Side is CblasRight, where the matrix A
is symmetric. When Uplo is CblasUpper then the upper triangle and diagonal of A
are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are
used.

int gsl_blas_chemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const Function
gsl_complex_float alpha, const gsl _matrix_complex_float * A, const
gsl_matrix_complex_float * B, const gsl_complex_float beta,
gsl_matrix_complex_float * C)
int gsl blas_zhemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
const gsl_complex alpha, const gsl_matrix_complex * A, const
gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex *
C)
These functions compute the matrix-matrix product and sum C = aAB + C for
Side is CblasLeft and C' = aBA + C for Side is CblasRight, where the matrix A
is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A
are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are
used. The imaginary elements of the diagonal are automatically set to zero.
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int gsl blas_strmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const
gsl_matrix_float * A, gsl_matrix_float * B)
int gsl_blas_dtrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const
gsl_matrix * A, gsl_matrix * B)
int gsl blas_ctrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float
alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float
* B)
int gsl _blas_ztrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha,
const gsl_matrix_complex * A, gsl_matrix_complex * B)
These functions compute the matrix-matrix product B = aop(A)B for Side is
CblasLeft and B = aBop(A) for Side is CblasRight. The matrix A is triangular
and op(A) = A, AT, A" for TransA = CblasNoTrans, CblasTrans, CblasConjTrans
When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is
CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the
diagonal of A is used, but if Diag is CblasUnit then the diagonal elements of the
matrix A are taken as unity and are not referenced.

int gsl blas_strsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const
gsl_matrix_float * A, gsl_matrix_float * B)
int gsl blas_dtrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const
gsl_matrix * A, gsl_matrix * B)
int gsl blas_ctrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float
alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float
* B)
int gsl_blas_ztrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, Function
CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha,
const gsl_matrix_complex * A, gsl_matrix_complex * B)
These functions compute the matrix-matrix product B = aop(inv(A))B for Side
is CblasLeft and B = aBop(inv(A)) for Side is CblasRight. The matrix A is
triangular and op(A) = A, AT, A" for TransA = CblasNoTrans, CblasTrans,
CblasConjTrans When Uplo is CblasUpper then the upper triangle of A is used,
and when Uplo is CblasLower then the lower triangle of A is used. If Diag is
CblasNonUnit then the diagonal of A is used, but if Diag is CblasUnit then the
diagonal elements of the matrix A are taken as unity and are not referenced.
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int gsl blas_ssyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
float alpha, const gsl_matrix_float * A, float beta, gsl_matrix_float
* ()

int gsl blas_dsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
double alpha, const gsl_matrix * A, double beta, gsl_matrix x C)

int gsl_blas_csyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function

const gsl_complex_float alpha, const gsl_matrix_complex_float * A,
const gsl_complex_float beta, gsl_matrix_complex_float * C)
int gsl blas_zsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function

const gsl_complex alpha, const gsl_matrix_complex * A, const

gsl_complex beta, gsl_matrix_complex * C)
These functions compute a rank-k update of the symmetric matrix C, C = a AAT+3C
when Trans is CblasNoTrans and C' = a« AT A+ 3C when Trans is CblasTrans. Since
the matrix C is symmetric only its upper half or lower half need to be stored. When
Uplo is CblasUpper then the upper triangle and diagonal of C are used, and when
Uplo is CblasLower then the lower triangle and diagonal of C' are used.

int gsl blas_cherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
float alpha, const gsl_matrix_complex_float * A, float beta,
gsl_matrix_complex_float * C)
int gsl_blas_zherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
double alpha, const gsl_matrix_complex * A, double beta,
gsl_matrix_complex * ()
These functions compute a rank-k update of the hermitian matrix C, C = a AA" +3C
when Trans is CblasNoTrans and C' = aA” A+ 3C when Trans is CblasTrans. Since
the matrix C is hermitian only its upper half or lower half need to be stored. When
Uplo is CblasUpper then the upper triangle and diagonal of C are used, and when
Uplo is CblasLower then the lower triangle and diagonal of C' are used. The imaginary
elements of the diagonal are automatically set to zero.

int gsl_blas_ssyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B,
float beta, gsl_matrix_float * C)
int gsl_blas_dsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function
Trans, double alpha, const gsl_matrix * A, const gsl_matrix * B,
double beta, gsl_matrix * C)
int gsl_blas_csyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
const gsl_complex_float alpha, const gsl_matrix_complex_float * A,
const gsl_matrix_complex_float * B, const gsl_complex_float beta,
gsl_matrix_complex_float * C)
int gsl_blas_zsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
const gsl_complex alpha, const gsl_matrix_complex * A, const
gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex
*C)
These functions compute a rank-2k update of the symmetric matrix C, C = « ABT +
aBAT + 8C when Trans is CblasNoTrans and C' = AT B+aBT A+ 3C when Trans
is CblasTrans. Since the matrix C is symmetric only its upper half or lower half
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need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of C are used, and when Uplo is CblasLower then the lower triangle and diagonal of
C are used.

int gsl_blas_cher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, Function
const gsl_complex_float alpha, const gsl_matrix_complex_float * A,
const gsl_matrix_complex_float * B, float beta,
gsl_matrix_complex_float * C)
int gsl_blas_zher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Function
Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const
gsl_matrix_complex * B, double beta, gsl_matrix_complex * C)
These functions compute a rank-2k update of the hermitian matrix C, C' = a AB 4
a*BAH + BC when Trans is CblasNoTrans and C = aA”B + o*B” A + 3C when
Trans is CblasTrans. Since the matrix C is hermitian only its upper half or lower half
need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal
of C are used, and when Uplo is CblasLower then the lower triangle and diagonal of
C are used. The imaginary elements of the diagonal are automatically set to zero.

12.2 Examples

The following program computes the product of two matrices using the Level-3 BLAS
function DGEMM,

(O.ll 0.12 0.13) }8; 18;; :<367.76 368.12)
0.21 0.22 0.23 1031 1031 674.06 674.72

The matrices are stored in row major order, according to the C convention for arrays.

#include <stdio.h>
#include <gsl/gsl_blas.h>

int
main (void)
{
double al[l = { 0.11, 0.12, 0.13,
0.21, 0.22, 0.23 };
double b[] = { 1011, 1012,
1021, 1022,
1031, 1032 };
double c[] = { 0.00, 0.00,
0.00, 0.00 };

gsl_matrix_view A = gsl_matrix_view_array(a, 2, 3);
gsl_matrix_view B = gsl_matrix_view_array(b, 3, 2);
gsl_matrix_view C = gsl_matrix_view_array(c, 2, 2);

/* Compute C = A B x/
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gsl_blas_dgemm (CblasNoTrans, CblasNoTrans,
1.0, &A.matrix, &B.matrix,
0.0, &C.matrix);

printf("[ %g, %g\n", c[0], c[1]);
printf (" %g, %g 1\n", cl[2], c[31);

return O;
}
Here is the output from the program,

$ ./a.out
[ 367.76, 368.12
674.06, 674.72 1]

12.3 References and Further Reading

Information on the BLAS standards, including both the legacy and draft interface standards,
is available online from the BLAS Homepage and BLAS Technical Forum web-site.

BLAS Homepage http://www.netlib.org/blas/
BLAS Technical Forumhttp://www.netlib.org/cgi-bin/checkout/blast/blast.pl

The following papers contain the specifications for Level 1, Level 2 and Level 3 BLAS.

C. Lawson, R. Hanson, D. Kincaid, F. Krogh, "Basic Linear Algebra Subprograms for
Fortran Usage", ACM Transactions on Mathematical Software, Vol. 5 (1979), Pages
308-325.

J.J. Dongarra, J. DuCroz, S. Hammarling, R. Hanson, "An Extended Set of Fortran
Basic Linear Algebra Subprograms", ACM Transactions on Mathematical Software,
Vol. 14, No. 1 (1988), Pages 1-32.

J.J. Dongarra, I. Duff, J. DuCroz, S. Hammarling, "A Set of Level 3 Basic Linear
Algebra Subprograms", ACM Transactions on Mathematical Software, Vol. 16 (1990),
Pages 1-28.

Postscript versions of the latter two papers are available from http://www.netlib.org/blas/.
A ¢cBLAS wrapper for Fortran BLAS libraries is available from the same location.
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13 Linear Algebra

This chapter describes functions for solving linear systems. The library provides sim-
ple linear algebra operations which operate directly on the gsl_vector and gsl_matrix
objects. These are intended for use with "small" systems where simple algorithms are
acceptable.

Anyone interested in large systems will want to use the sophisticated routines found
in LAPACK. The Fortran version of LAPACK is recommended as the standard package for
linear algebra. It supports blocked algorithms, specialized data representations and other
optimizations.

The functions described in this chapter are declared in the header file ‘gs1_linalg.h’.

13.1 LU Decomposition

A general square matrix A has an LU decomposition into upper and lower triangular
matrices,

PA=LU

where P is a permutation matrix, L is unit lower triangular matrix and U is upper triangular
matrix. For square matrices this decomposition can be used to convert the linear system
Az = b into a pair of triangular systems (Ly = Pb, Uz = y), which can be solved by forward
and back-substitution.

int gsl linalg LU_decomp (gsl_matrix * A, gsl_permutation * p, Function
int *signum)
int gsl linalg complex LU _decomp (gsl_matrix_complex * A, Function

gsl_permutation * p, int *signum)
These functions factorize the square matrix A into the LU decomposition PA = LU.
On output the diagonal and upper triangular part of the input matrix A contain the
matrix U. The lower triangular part of the input matrix (excluding the diagonal)
contains L. The diagonal elements of L are unity, and are not stored.

The permutation matrix P is encoded in the permutation p. The j-th column of the
matrix P is given by the k-th column of the identity matrix, where k = p; the j-th
element of the permutation vector. The sign of the permutation is given by signum.
It has the value (—1)", where n is the number of interchanges in the permutation.

The algorithm used in the decomposition is Gaussian Elimination with partial pivot-
ing (Golub & Van Loan, Matrix Computations, Algorithm 3.4.1).

int gsl linalg LU _solve (const gsl_matrix * LU, const Function
gsl_permutation * p, const gsl_vector * b, gsl_vector * x)
int gsl linalg complex_LU _solve (const gsl_matrix_complex * Function

LU, const gsl_permutation * p, const gsl_vector_complex * b,
gsl_vector_complex * X)
These functions solve the system Ax = b using the LU decomposition of A into (LU,
p) given by gsl_linalg LU_decomp or gsl_linalg_complex_LU_decomp.
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int gsl linalg LU _svx (const gsl_matrix * LU, const Function
gsl_permutation * p, gsl_vector * x)
int gsl linalg complex LU_svx (const gsl_matrix_complex * LU, Function

const gsl_permutation * p, gsl_vector_complex * x)
These functions solve the system Ax = b in-place using the LU decomposition of A
into (LU,p). On input x should contain the right-hand side b, which is replaced by
the solution on output.

int gsl linalg LU refine (const gsl_matrix * A, const gsl_matrix Function
* LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * X,
gsl_vector * residual)
int gsl linalg complex_LU _refine (const gsl_matrix_complex * Function
A, const gsl_matrix_complex * LU, const gsl_permutation * p, const
gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex *
residual)
These functions apply an iterative improvement to x, the solution of Ax = b, using the
LU decomposition of A into (LU,p). The initial residual r = Az — b is also computed
and stored in residual.

int gsl linalg LU _invert (const gsl_matrix * LU, const Function
gsl_permutation * p, gsl_matrix * inverse)
int gsl_complex_linalg LU _invert (const gsl_matrix_complex * Function

LU, const gsl_permutation * p, gsl_matrix_complex * inverse)
These functions compute the inverse of a matrix A from its LU decomposition (LU,p),
storing the result in the matrix inverse. The inverse is computed by solving the
system Ax = b for each column of the identity matrix. It is preferable to avoid direct
computation of the inverse whenever possible.

double gsl linalg LU _det (gsl_matrix * LU, int signum) Function
gsl_complex gsl linalg complex_ LU _det (gsl_matrix_complex * Function
LU, int signum)
These functions compute the determinant of a matrix A from its LU decomposition,
LU. The determinant is computed as the product of the diagonal elements of U and
the sign of the row permutation signum.

double gsl linalg LU _Indet (gsl_matrix * LU) Function

double gsl linalg complex_ LU _Indet (gsl_matrix_complex * LU) Function
These functions compute the logarithm of the absolute value of the determinant of a
matrix A, In |det(A)|, from its LU decomposition, LU. This function may be useful if
the direct computation of the determinant would overflow or underflow.
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int gsl linalg LU _sgndet (gsl_matrix * LU, int signum) Function
gsl_complex gsl linalg complex_LU_sgndet Function
(gsl_matrix_complex * LU, int signum)
These functions compute the sign or phase factor of the determinant of a matrix A,
det(A)/|det(A)]|, from its LU decomposition, LU.

13.2 QR Decomposition

A general rectangular M-by-N matrix A has a QR decomposition into the product of an
orthogonal M-by-M square matrix @ (where QTQ = I) and an M-by-N right-triangular
matrix R,

A=0QR

This decomposition can be used to convert the linear system Ax = b into the triangular
system Rz = QTb, which can be solved by back-substitution. Another use of the QR
decomposition is to compute an orthonormal basis for a set of vectors. The first N columns
of @ form an orthonormal basis for the range of A, ran(A), when A has full column rank.

int gsl linalg QR _decomp (gsl_matrix * A, gsl_vector * tau) Function

This function factorizes the M-by-N matrix A into the QR decomposition A = QR.
On output the diagonal and upper triangular part of the input matrix contain the
matrix R. The vector tau and the columns of the lower triangular part of the matrix
A contain the Householder coefficients and Householder vectors which encode the
orthogonal matrix Q. The vector tau must be of length k£ = min(M, N). The matrix
Q is related to these components by, Q@ = Q4...Q2Q; where Q; = I — Tv;v] and v;
is the Householder vector v; = (0, ...,1, A(i + 1,4), A(i + 2,1%), ..., A(m,4)). This is the
same storage scheme as used by LAPACK.

The algorithm used to perform the decomposition is Householder QR (Golub & Van
Loan, Matrix Computations, Algorithm 5.2.1).

int gsl linalg QR _solve (const gsl_matrix * QR, const Function
gsl_vector * tau, const gsl_vector * b, gsl_vector * x)
This function solves the system Az = b using the QR decomposition of A into (QR,
tau) given by gsl_linalg_QR_decomp.

int gsl linalg QR _svx (const gsl_matrix * QR, const gsl_vector Function
* tau, gsl_vector * x)
This function solves the system Ax = b in-place using the QR decomposition of
A into (QR,tau) given by gsl_linalg_QR_decomp. On input x should contain the
right-hand side b, which is replaced by the solution on output.

int gsl linalg QR _Issolve (const gsl_matrix * QR, const Function
gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector *
residual)

This function finds the least squares solution to the overdetermined system Ax = b
where the matrix A has more rows than columns. The least squares solution minimizes
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the Euclidean norm of the residual, || Az — b||.The routine uses the QR decomposition
of A into (QR, tau) given by gsl_linalg_QR_decomp. The solution is returned in x.
The residual is computed as a by-product and stored in residual.

int gsl linalg QR_QTvec (const gsl_matrix * QR, const Function
gsl_vector * tau, gsl_vector * v)
This function applies the matrix Q7 encoded in the decomposition (QR,tau) to the
vector v, storing the result Q7 v in v. The matrix multiplication is carried out directly
using the encoding of the Householder vectors without needing to form the full matrix

Q.

int gsl linalg QR _Qvec (const gsl_matrix * QR, const Function
gsl_vector * tau, gsl_vector * v)
This function applies the matrix @ encoded in the decomposition (QR,tau) to the
vector v, storing the result Qv in v. The matrix multiplication is carried out directly
using the encoding of the Householder vectors without needing to form the full matrix

Q.

int gsl linalg QR _Rsolve (const gsl_matrix * QR, const Function
gsl_vector * b, gsl_vector * x)
This function solves the triangular system Rx = b for x. It may be useful if the
product b’ = Q*b has already been computed using gs1l_linalg_QR_QTvec.

int gsl linalg_ QR_Rsvx (const gsl_matrix * QR, gsl_vector * x) Function

This function solves the triangular system Rx = b for x in-place. On input x should
contain the right-hand side b and is replaced by the solution on output. This function
may be useful if the product b’ = QTb has already been computed using gsl_linalg_
QR_QTvec.

int gsl linalg QR _unpack (const gsl_matrix * QR, const Function
gsl_vector * tau, gsl_matrix * Q, gsl_matrix * R)
This function unpacks the encoded QR decomposition (QR,tau) into the matrices Q
and R, where Q is M-by-M and R is M-by-N.

int gsl linalg QR_QRsolve (gsl_matrix * @, gsl_matrix * R, Function
const gsl_vector * b, gsl_vector * x)
This function solves the system Rz = QTb for x. It can be used when the QR
decomposition of a matrix is available in unpacked form as (Q,R).

int gsl linalg QR _update (gsl_matrix * Q, gsl_matrix * R, Function
gsl_vector * w, const gsl_vector * v)
This function performs a rank-1 update wv”? of the QR decomposition (Q, R). The
update is given by Q'R’ = QR + wv’ where the output matrices Q' and R’ are also
orthogonal and right triangular. Note that w is destroyed by the update.
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int gsl linalg R _solve (const gsl_matrix * R, const gsl_vector * Function
b, gsl_vector * x)
This function solves the triangular system Rx = b for the N-by-N matrix R.

int gsl linalg R _svx (const gsl_matrix * R, gsl_vector * x) Function
This function solves the triangular system Rz = b in-place. On input x should contain
the right-hand side b, which is replaced by the solution on output.

13.3 QR Decomposition with Column Pivoting

The QR decomposition can be extended to the rank deficient case by introducing a
column permutation P,

AP = QR

The first  columns of this () form an orthonormal basis for the range of A for a matrix with
column rank r. This decomposition can also be used to convert the linear system Az = b
into the triangular system Ry = QTb,z = Py, which can be solved by back-substitution
and permutation. We denote the QR decomposition with column pivoting by QRPT since
A= QRPT.

int gsl linalg QRPT _decomp (gsl_matrix * A, gsl_vector * Function

tau, gsl_permutation * p, int *signum, gsl_vector * norm)
This function factorizes the M-by-N matrix A into the QRPT decomposition A =
QRPT. On output the diagonal and upper triangular part of the input matrix contain
the matrix R. The permutation matrix P is stored in the permutation p. The sign of
the permutation is given by signum. It has the value (—1)", where n is the number
of interchanges in the permutation. The vector tau and the columns of the lower
triangular part of the matrix A contain the Householder coefficients and vectors which
encode the orthogonal matrix Q. The vector tau must be of length k¥ = min(M, N).
The matrix @ is related to these components by, Q = Q,...Q2Q; where Q; = I —T;v,v]
and v; is the Householder vector v; = (0, ..., 1, A(i +1,7), A(i + 2,14), ..., A(m,i)). This
is the same storage scheme as used by LAPACK. On output the norms of each column
of R are stored in the vector norm.

The algorithm used to perform the decomposition is Householder QR with column
pivoting (Golub & Van Loan, Matrix Computations, Algorithm 5.4.1).

int gsl linalg QRPT _decomp2 (const gsl_matrix * A, Function
gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p,
int *signum, gsl_vector * norm)
This function factorizes the matrix A into the decomposition A = QRPT without
modifying A itself and storing the output in the separate matrices q and r.

int gsl linalg QRPT solve (const gsl_matrix * QR, const Function
gsl_vector * tau, const gsl_permutation * p, const gsl_vector * b,
gsl_vector * x)
This function solves the system Az = b using the QRP? decomposition of A into
(QR, tau, p) given by gsl_linalg_QRPT_decomp.
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int gsl linalg QRPT svx (const gsl_matrix * QR, const Function
gsl_vector * tau, const gsl_permutation * p, gsl_vector * x)
This function solves the system Az = b in-place using the Q RPT decomposition of A
into (QR,tau,p). On input x should contain the right-hand side b, which is replaced
by the solution on output.

int gsl linalg QRPT_QRsolve (const gsl_matrix * @, const Function
gsl_matrix * R, const gsl_permutation * p, const gsl_vector * b,
gsl_vector * x)
This function solves the system RPTz = Qb for x. It can be used when the QR
decomposition of a matrix is available in unpacked form as (Q,R).

int gsl linalg QRPT _update (gsl_matrix * ), gsl_matrix * R, Function
const gsl_permutation * p, gsl_vector * u, const gsl_vector * v)
This function performs a rank-1 update wv” of the QRPT decomposition (Q, R,p).
The update is given by Q'R = QR + wvT where the output matrices Q' and R’ are
also orthogonal and right triangular. Note that w is destroyed by the update. The
permutation p is not changed.

int gsl linalg QRPT _Rsolve (const gsl_matrix * QR, const Function
gsl_permutation * p, const gsl_vector * b, gsl_vector * x)
This function solves the triangular system RPTz = b for the N-by-N matrix R
contained in QR.

int gsl linalg QRPT _Rsvx (const gsl_matrix * QR, const Function
gsl_permutation * p, gsl_vector * x)
This function solves the triangular system RPTx = b in-place for the N-by-N matrix
R contained in QR. On input x should contain the right-hand side b, which is replaced
by the solution on output.

13.4 Singular Value Decomposition

A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into
the product of an M-by-N orthogonal matrix U, an N-by-N diagonal matrix of singular
values S and the transpose of an N-by-N orthogonal square matrix V,

A=USVT

The singular values o; = S;; are all non-negative and are generally chosen to form a non-
increasing sequence g, > 0y > ... > oy > 0.

The singular value decomposition of a matrix has many practical uses. The condition
number of the matrix is given by the ratio of the largest singular value to the smallest
singular value. The presence of a zero singular value indicates that the matrix is singular.
The number of non-zero singular values indicates the rank of the matrix. In practice singular
value decomposition of a rank-deficient matrix will not produce exact zeroes for singular
values, due to finite numerical precision. Small singular values should be edited by choosing
a suitable tolerance.
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int gsl linalg SV _decomp (gsl_matrix * A, gsl_matrix x V, Function
gsl_vector * S, gsl_vector * work)

This function factorizes the M-by-N matrix A into the singular value decomposition
A = USVT. On output the matrix A is replaced by U. The diagonal elements of
the singular value matrix S are stored in the vector S. The singular values are non-
negative and form a non-increasing sequence from S; to Sy. The matrix V contains
the elements of V in untransposed form. To form the product USVT it is necessary
to take the transpose of V. A workspace of length N is required in work.

This routine uses the Golub-Reinsch SVD algorithm.

int gsl linalg SV_decomp_mod (gsl_matrix * A, gsl_matrix * Function
X, gsl_matrix * V, gsl_vector x S, gsl_vector * work)
This function computes the SVD using the modified Golub-Reinsch algorithm, which
is faster for M >> N. It requires the vector work and the N-by-N matrix X as
additional working space.

int gsl linalg SV_decomp_jacobi (gsl_matrix * A, gsl_matrix * Function
V, gsl_vector * S)
This function computes the SVD using one-sided Jacobi orthogonalization (see refer-
ences for details). The Jacobi method can compute singular values to higher relative
accuracy than Golub-Reinsch algorithms.

int gsl linalg SV _solve (gsl_matrix * U, gsl_matrix * V, Function
gsl_vector * S, const gsl_vector * b, gsl_vector * x)
This function solves the system Az = b using the singular value decomposition (U, S,
V) of A given by gsl_linalg_SV_decomp.
Only non-zero singular values are used in computing the solution. The parts of the
solution corresponding to singular values of zero are ignored. Other singular values
can be edited out by setting them to zero before calling this function.

In the over-determined case where A has more rows than columns the system is solved
in the least squares sense, returning the solution x which minimizes ||Az — b||».

13.5 Cholesky Decomposition

A symmetric, positive definite square matrix A has a Cholesky decomposition into a
product of a lower triangular matrix L and its transpose L7,

A=LL"

This is sometimes referred to as taking the square-root of a matrix. The Cholesky decom-
position can only be carried out when all the eigenvalues of the matrix are positive. This
decomposition can be used to convert the linear system Az = b into a pair of triangular
systems (Ly = b, LTx = y), which can be solved by forward and back-substitution.

int gsl_linalg_cholesky _decomp (gsl_matrix * A) Function
This function factorizes the positive-definite square matrix A into the Cholesky de-
composition A = LLT. On output the diagonal and lower triangular part of the input
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matrix A contain the matrix L. The upper triangular part of the input matrix con-
tains LT, the diagonal terms being identical for both L and L”. If the matrix is not
positive-definite then the decomposition will fail, returning the error code GSL_EDOM.

int gsl linalg_cholesky solve (const gsl_matrix * cholesky, const Function
gsl_vector * b, gsl_vector * x)
This function solves the system Ax = b using the Cholesky decomposition of A into
the matrix cholesky given by gsl_linalg_cholesky_decomp.

int gsl linalg_cholesky_svx (const gsl_matrix * cholesky, Function
gsl_vector * x)
This function solves the system Ax = b in-place using the Cholesky decomposition
of A into the matrix cholesky given by gsl_linalg_cholesky_decomp. On input x
should contain the right-hand side b, which is replaced by the solution on output.

13.6 Tridiagonal Decomposition of Real Symmetric Matrices

A symmetric matrix A can be factorized by similarity transformations into the form,
A=QTQ"

where @) is an orthogonal matrix and 7 is a symmetric tridiagonal matrix.

int gsl linalg symmtd_decomp (gsl_matrix * A, gsl_vector * Function
tau)

This function factorizes the symmetric square matrix A into the symmetric tridiagonal
decomposition QT'QT. On output the diagonal and subdiagonal part of the input
matrix A contain the tridiagonal matrix T'. The remaining lower triangular part of the
input matrix contains the Householder vectors which, together with the Householder
coefficients tau, encode the orthogonal matrix ). This storage scheme is the same as
used by LAPACK. The upper triangular part of A is not referenced.

int gsl linalg symmtd_unpack (const gsl_matrix * A, const Function
gsl_vector * tau, gsl_matrix * (), gsl_vector * diag, gsl_vector *
subdiag)
This function unpacks the encoded symmetric tridiagonal decomposition (A, tau)
obtained from gsl_linalg_symmtd_decomp into the orthogonal matrix Q, the vector
of diagonal elements diag and the vector of subdiagonal elements subdiag.

int gsl linalg symmtd_unpack_T (const gsl_matrix * A, Function
gsl_vector * diag, gsl_vector * subdiag)
This function unpacks the diagonal and subdiagonal of the encoded symmetric tridi-
agonal decomposition (A, tau) obtained from gsl_linalg_symmtd_decomp into the
vectors diag and subdiag.
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13.7 Tridiagonal Decomposition of Hermitian Matrices

A hermitian matrix A can be factorized by similarity transformations into the form,
A=UTU"

where U is an unitary matrix and 7' is a real symmetric tridiagonal matrix.

int gsl linalg hermtd_decomp (gsl_matrix_complex * A, Function
gsl_vector_complex * tau)

This function factorizes the hermitian matrix A into the symmetric tridiagonal de-
composition UTUT. On output the real parts of the diagonal and subdiagonal part of
the input matrix A contain the tridiagonal matrix 7". The remaining lower triangular
part of the input matrix contains the Householder vectors which, together with the
Householder coefficients tau, encode the orthogonal matrix (). This storage scheme
is the same as used by LAPACK. The upper triangular part of A and imaginary parts
of the diagonal are not referenced.

int gsl linalg hermtd_unpack (const gsl_matrix_complex * A, Function
const gsl_vector_complex * tau, gsl_matrix_complex * (), gsl_vector *
diag, gsl_vector * subdiag)
This function unpacks the encoded tridiagonal decomposition (A, tau) obtained from
gsl_linalg_hermtd_decomp into the unitary matrix U, the real vector of diagonal
elements diag and the real vector of subdiagonal elements subdiag.

int gsl linalg hermtd_unpack_T (const gsl_matrix_complex * A, Function
gsl_vector * diag, gsl_vector * subdiag)
This function unpacks the diagonal and subdiagonal of the encoded tridiagonal de-
composition (A, tau) obtained from gsl_linalg_hermtd_decomp into the real vectors
diag and subdiag.

13.8 Bidiagonalization

A general matrix A can be factorized by similarity transformations into the form,
A=UBV"

where U and V' are orthogonal matrices and B is a N-by-N bidiagonal matrix with non-zero
entries only on the diagonal and superdiagonal. The size of U is M-by-N and the size of V
is N-by-N.

int gsl linalg _bidiag_decomp (gsl_matrix * A, gsl_vector * Function
tau-U, gsl_vector * tau.V)

This function factorizes the M-by-N matrix A into bidiagonal form UBVT. The
diagonal and superdiagonal of the matrix B are stored in the diagonal and superdiag-
onal of A. The orthogonal matrices U and V are stored as compressed Householder
vectors in the remaining elements of A. The Householder coefficients are stored in the
vectors tau-U and tau_V. The length of tau_U must equal the number of elements in
the diagonal of A and the length of tau_V should be one element shorter.
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int gsl_ linalg _bidiag_unpack (const gsl_matrix * A, const Function
gsl_vector * tau_U, gsl_matrix * U, const gsl_vector * tau_V,
gsl_matrix * V, gsl_vector * diag, gsl_vector * superdiag)
This function unpacks the bidiagonal decomposition of A given by gsl_linalg_
bidiag_decomp, (A, tau_U, tau_V) into the separate orthogonal matrices U, V and
the diagonal vector diag and superdiagonal superdiag.

int gsl linalg _bidiag_unpack2 (gsl_matrix * A, gsl_vector * Function
tau_U, gsl_vector * tau_V, gsl_matrix * V)
This function unpacks the bidiagonal decomposition of A given by gsl_linalg_
bidiag_decomp, (A, tau_U, tau_V) into the separate orthogonal matrices U, V and

the diagonal vector diag and superdiagonal superdiag. The matrix U is stored in-place
in A.

int gsl linalg _bidiag_unpack B (const gsl_matrix * A, Function
gsl_vector * diag, gsl_vector * superdiag)
This function unpacks the diagonal and superdiagonal of the bidiagonal decomposi-
tion of A given by gsl_linalg bidiag_decomp, into the diagonal vector diag and
superdiagonal vector superdiag.

13.9 Householder solver for linear systems

int gsl linalg HH solve (gsl_matrix * A, const gsl_vector * b, Function
gsl_vector * x)
This function solves the system Az = b directly using Householder transformations.
On output the solution is stored in x and b is not modified. The matrix A is destroyed
by the Householder transformations.

int gsl linalg HH svx (gsl_matrix * A, gsl_vector * x) Function
This function solves the system Ax = b in-place using Householder transformations.
On input x should contain the right-hand side b, which is replaced by the solution on
output. The matrix A is destroyed by the Householder transformations.

13.10 Tridiagonal Systems

int gsl linalg solve_symm _tridiag (const gsl_vector * diag, Function
const gsl_vector * e, const gsl_vector * b, gsl_vector * x)
This function solves the general N-by-N system Ax = b where A is symmetric tridi-
agonal. The form of A for the 4-by-4 case is shown below,

dy eo
€o d1 €1
A=
er dy e

ey ds
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int gsl_ linalg _solve_symm _cyc_tridiag (const gsl_vector * diag,
const gsl_vector * e, const gsl_vector * b, gsl_vector * x)
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Function

This function solves the general N-by-N system Ax = b where A is symmetric cyclic
tridiagonal. The form of A for the 4-by-4 case is shown below,

13.11 Examples

dy eo
e d1

A= 0
€1

€3

€3
€1
dy e
€9 d3

The following program solves the linear system Ax = b. The system to be solved is,

0.18 0.60
0.41 0.24
0.14 0.30
0.51 0.13

0.57 0.96 T
0.99 0.58 T
0.97 0.66 To
0.19 0.85 T3

1.0
2.0
3.0
4.0

and the solution is found using LU decomposition of the matrix A.

#include <stdio.h>

#include <gsl/gsl_linalg.h>

int

main (void)

{

double a_datal]

double b_datal]

gsl_matrix_view
= gsl_matrix_view_array(a_data, 4, 4);

m

gsl_vector_view b

gsl_vector *x

int s;

{ 0.18, 0.60,
0.41, 0.24,
0.14, 0.30,
0.51, 0.13,

0.57, 0.96,
0.99, 0.58,
0.97, 0.66,
0.19, 0.85 };

0, 4.0 };

= gsl_vector_view_array(b_data, 4);

gsl_vector_alloc (4);

gsl_permutation * p = gsl_permutation_alloc (4);

gsl_linalg LU_decomp (&m.matrix, p, &s);

gsl_linalg LU_solve (&m.matrix, p, &b.vector, x);

printf ("x = \n");
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gsl_vector_fprintf(stdout, x, "%g");

gsl_permutation_free (p);
return O;

b

Here is the output from the program,
x = -4.05205
-12.6056
1.66091
8.69377

This can be verified by multiplying the solution x by the original matrix A using GNU
OCTAVE,

octave> A

[ 0.18, 0.60, 0.57, 0.96;
0.41, 0.24, 0.99, 0.58;
0.14, 0.30, 0.97, 0.66;
0.51, 0.13, 0.19, 0.85 1;

octave> x [ -4.05205; -12.6056; 1.66091; 8.69377];

octave> A * x
ans =

1.0000
2.0000
3.0000
4.0000

This reproduces the original right-hand side vector, b, in accordance with the equation
Az =b.

13.12 References and Further Reading

Further information on the algorithms described in this section can be found in the following
book,

G. H. Golub, C. F. Van Loan, Matrix Computations (3rd Ed, 1996), Johns Hopkins
University Press, ISBN 0-8018-5414-8.
The LAPACK library is described in,

LAPACK Users’ Guide (Third Edition, 1999), Published by STAM, ISBN 0-89871-447-
8.

http://www.netlib.org/lapack
The LAPACK source code can be found at the website above, along with an online copy of
the users guide.
The Modified Golub-Reinsch algorithm is described in the following paper,
T.F. Chan, "An Improved Algorithm for Computing the Singular Value Decomposi-
tion", ACM Transactions on Mathematical Software, 8 (1982), pp 72-83.

The Jacobi algorithm for singular value decomposition is described in the following papers,
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J.C.Nash, "A one-sided transformation method for the singular value decomposition
and algebraic eigenproblem", Computer Journal, Volume 18, Number 1 (1973), p 74—
76

James Demmel, Kresimir Veselic, "Jacobi’s Method is more accurate than QR",
Lapack Working Note 15 (LAWN-15), October 1989.  Available from netlib,
http://www.netlib.org/lapack/ in the lawns or lawnspdf directories.
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14 Eigensystems

This chapter describes functions for computing eigenvalues and eigenvectors of matrices.
There are routines for real symmetric and complex hermitian matrices, and eigenvalues can
be computed with or without eigenvectors. The algorithms used are symmetric bidiagonal-
ization followed by QR reduction.

These routines are intended for "small" systems where simple algorithms are acceptable.
Anyone interested finding eigenvalues and eigenvectors of large matrices will want to use the
sophisticated routines found in LAPACK. The Fortran version of LAPACK is recommended
as the standard package for linear algebra.

The functions described in this chapter are declared in the header file ‘gsl_eigen.h’.

14.1 Real Symmetric Matrices

gsl_eigen_symm_workspace * gsl_eigen_symm _alloc (const Function
size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n real symmet-
ric matrices. The size of the workspace is O(2n).

void gsl_eigen_symm free (gsl_eigen_symm_workspace * w) Function
This function frees the memory associated with the workspace w.

int gsl eigen_symm (gsl_matrix * A, gsl_vector * eval, Function
gsl_eigen_symm_workspace * w)
This function computes the eigenvalues of the real symmetric matrix A. Additional
workspace of the appropriate size must be provided in w. The diagonal and lower
triangular part of A are destroyed during the computation, but the strict upper
triangular part is not referenced. The eigenvalues are stored in the vector eval and
are unordered.

gsl_eigen_symmv_workspace * gsl_eigen_symmv_alloc (const Function
size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of
n-by-n real symmetric matrices. The size of the workspace is O(4n).

void gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * w) Function
This function frees the memory associated with the workspace w.

int gsl eigen_symmv (gsl_matrix * A, gsl_vector * eval, Function
gsl_matrix * evec, gsl_eigen_symmv_workspace * w)
This function computes the eigenvalues and eigenvectors of the real symmetric matrix
A. Additional workspace of the appropriate size must be provided in w. The diagonal
and lower triangular part of A are destroyed during the computation, but the strict
upper triangular part is not referenced. The eigenvalues are stored in the vector
eval and are unordered. The corresponding eigenvectors are stored in the columns
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of the matrix evec. For example, the eigenvector in the first column corresponds to
the first eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and
normalised to unit magnitude.

14.2 Complex Hermitian Matrices

gsl_eigen_herm_workspace * gsl_eigen_herm_alloc (const Function
size_t n)
This function allocates a workspace for computing eigenvalues of n-by-n complex
hermitian matrices. The size of the workspace is O(3n).

void gsl_eigen_herm free (gsl_eigen_herm_workspace * w) Function
This function frees the memory associated with the workspace w.

int gsl eigen_herm (gsl_matrix_complex * A, gsl_vector * eval, Function
gsl_eigen_herm_workspace * w)

This function computes the eigenvalues of the complex hermitian matrix A. Additional
workspace of the appropriate size must be provided in w. The diagonal and lower
triangular part of A are destroyed during the computation, but the strict upper
triangular part is not referenced. The imaginary parts of the diagonal are assumed
to be zero and are not referenced. The eigenvalues are stored in the vector eval and
are unordered.

gsl_eigen_hermv_workspace * gsl _eigen_hermv_alloc (const Function
size_t n)
This function allocates a workspace for computing eigenvalues and eigenvectors of
n-by-n complex hermitian matrices. The size of the workspace is O(5n).

void gsl_eigen_hermv_free (gsl_eigen_hermv_workspace * w) Function
This function frees the memory associated with the workspace w.

int gsl eigen_hermv (gsl_matrix_complex * A, gsl_vector * eval, Function

gsl_matrix_complex * evec, gsl_eigen_hermv_workspace * w)
This function computes the eigenvalues and eigenvectors of the complex hermitian
matrix A. Additional workspace of the appropriate size must be provided in w. The
diagonal and lower triangular part of A are destroyed during the computation, but the
strict upper triangular part is not referenced. The imaginary parts of the diagonal
are assumed to be zero and are not referenced. The eigenvalues are stored in the
vector eval and are unordered. The corresponding complex eigenvectors are stored
in the columns of the matrix evec. For example, the eigenvector in the first column
corresponds to the first eigenvalue. The eigenvectors are guaranteed to be mutually
orthogonal and normalised to unit magnitude.
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14.3 Sorting Eigenvalues and Eigenvectors

int gsl eigen_symmv _sort (gsl_vector * eval, gsl_matrix * evec, Function
gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the
corresponding real eigenvectors stored in the columns of the matrix evec into ascend-
ing or descending order according to the value of the parameter sort_type,

GSL_EIGEN_SORT_VAL_ASC
ascending order in numerical value

GSL_EIGEN_SORT_VAL_DESC
descending order in numerical value

GSL_EIGEN_SORT_ABS_ASC
ascending order in magnitude

GSL_EIGEN_SORT_ABS_DESC
descending order in magnitude

int gsl eigen_hermv _sort (gsl_vector * eval, gsl_matrix_complex Function
* evec, gsl_eigen_sort_t sort_type)
This function simultaneously sorts the eigenvalues stored in the vector eval and the
corresponding complex eigenvectors stored in the columns of the matrix evec into
ascending or descending order according to the value of the parameter sort_type as
shown above.

14.4 Examples

The following program computes the eigenvalues and eigenvectors of the 4-th order
Hilbert matrix, H(i,j) = 1/(i + 7+ 1).
#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>

int
main (void)
{
double datal] = { 1.0 , 1/2.0, 1/3.0, 1/4.0,
1/2.0, 1/3.0, 1/4.0, 1/5.0,
1/3.0, 1/4.0, 1/5.0, 1/6.0,
1/4.0, 1/5.0, 1/6.0, 1/7.0 };

gsl_matrix_view m
= gsl_matrix_view_array(data, 4, 4);

gsl_vector *eval = gsl_vector_alloc (4);
gsl_matrix *evec = gsl_matrix_alloc (4, 4);
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gsl_eigen_symmv_workspace * w =
gsl_eigen_symmv_alloc (4);

gsl_eigen_symmv (&m.matrix, eval, evec, w);

gsl_eigen_symmv_free(w);

gsl_eigen_symmv_sort (eval, evec,
GSL_EIGEN_SORT_ABS_ASC);

{

}

int i;

for (i = 0; i < 4; i++)

{

double eval_i
= gsl_vector_get(eval, i);
gsl_vector_view evec_i
= gsl_matrix_column(evec, 1i);

printf ("eigenvalue = %g\n", eval_i);
printf ("eigenvector = \n");
gsl_vector_fprintf (stdout,

return O;

¥

&evec_i.vector, "%g");

Here is the beginning of the output from the program,

$ ./a.out
eigenvalue =
eigenvector =
-0.0291933
0.328712

-0.
0.5

This can be compared with the corresponding output from GNU OCTAVE,

791411
14553

9.67023e-05

octave> [v,d] = eig(hilb(4));
octave> diag(d)

ans

9.6702e-05
6.7383e-03
1.6914e-01
1.5002e+00

143
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octave> v
V=

0.029193 0.179186 -0.582076 0.792608
-0.328712 -0.741918 0.370502 0.451923
0.791411  0.100228 0.509579  0.322416
-0.51456563 0.638283 0.514048 0.2562161

Note that the eigenvectors can differ by a change of sign, since the sign of an eigenvector is
arbitrary.

14.5 References and Further Reading

Further information on the algorithms described in this section can be found in the following
book,

G. H. Golub, C. F. Van Loan, Matrix Computations (3rd Ed, 1996), Johns Hopkins
University Press, ISBN 0-8018-5414-8.
The LAPACK library is described in,

LAPACK Users’ Guide (Third Edition, 1999), Published by STAM, ISBN 0-89871-447-
8.

http://www.netlib.org/lapack

The LAPACK source code can be found at the website above along with an online copy of
the users guide.
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15 Fast Fourier Transforms (FFTs)

This chapter describes functions for performing Fast Fourier Transforms (FFTs). The
library includes radix-2 routines (for lengths which are a power of two) and mixed-radix
routines (which work for any length). For efficiency there are separate versions of the rou-
tines for real data and for complex data. The mixed-radix routines are a reimplementation
of the FFTPACK library by Paul Swarztrauber. Fortran code for FFTPACK is available on
Netlib (FFTPACK also includes some routines for sine and cosine transforms but these are
currently not available in GSL). For details and derivations of the underlying algorithms
consult the document GSL FFT Algorithms (see Section 15.8 [FFT References and Further
Reading], page 160)

15.1 Mathematical Definitions

Fast Fourier Transforms are efficient algorithms for calculating the discrete fourier trans-
form (DFT),
N-1
x; = Z z exp(—2mijk/N)
k=0
The DFT usually arises as an approximation to the continuous fourier transform when
functions are sampled at discrete intervals in space or time. The naive evaluation of the
discrete fourier transform is a matrix-vector multiplication WZ. A general matrix-vector
multiplication takes O(NN?) operations for N data-points. Fast fourier transform algorithms
use a divide-and-conquer strategy to factorize the matrix W into smaller sub-matrices,
corresponding to the integer factors of the length N. If N can be factorized into a product
of integers fi fo ... f,, then the DFT can be computed in O(N Y f;) operations. For a radix-2
FFT this gives an operation count of O(N log, V).

All the FFT functions offer three types of transform: forwards, inverse and backwards,
based on the same mathematical definitions. The definition of the forward fourier transform,
x = FFT(2), is,

N-1
x; =Y z,exp(—2mijk/N)
k=0
and the definition of the inverse fourier transform, x = IFFT(z), is,
1 N1
4= kZ:O xp exp(2mijk/N).
The factor of 1/N makes this a true inverse. For example, a call to gsl_fft_complex_
forward followed by a call to gsl_fft_complex_inverse should return the original data
(within numerical errors).

In general there are two possible choices for the sign of the exponential in the transform/
inverse-transform pair. GSL follows the same convention as FFTPACK, using a negative
exponential for the forward transform. The advantage of this convention is that the inverse
transform recreates the original function with simple fourier synthesis. Numerical Recipes
uses the opposite convention, a positive exponential in the forward transform.
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The backwards FFT is simply our terminology for an unscaled version of the inverse
FFT,

N-1
ghackwards — Z xp exp(2mijk/N).
k=0

When the overall scale of the result is unimportant it is often convenient to use the back-
wards FF'T instead of the inverse to save unnecessary divisions.

15.2 Overview of complex data FFT's

The inputs and outputs for the complex FFT routines are packed arrays of floating point
numbers. In a packed array the real and imaginary parts of each complex number are placed
in alternate neighboring elements. For example, the following definition of a packed array
of length 6,

gsl_complex_packed_array datal[6];
can be used to hold an array of three complex numbers, z[3], in the following way,
data[0] = Re(z[0])

data[1] = Im(z[0])
data[2] = Re(z[1])
data[3] = Im(z[1])
data[4] = Re(z[2])
datal[5] = Im(z[2])

A stride parameter allows the user to perform transforms on the elements z[stridex*i]
instead of z[i]. A stride greater than 1 can be used to take an in-place FFT of the column
of a matrix. A stride of 1 accesses the array without any additional spacing between
elements.

The array indices have the same ordering as those in the definition of the DFT — i.e.
there are no index transformations or permutations of the data.

For physical applications it is important to remember that the index appearing in the
DFT does not correspond directly to a physical frequency. If the time-step of the DFT is
A then the frequency-domain includes both positive and negative frequencies, ranging from
—1/(2A) through 0 to +1/(2A). The positive frequencies are stored from the beginning of
the array up to the middle, and the negative frequencies are stored backwards from the end
of the array.

Here is a table which shows the layout of the array data, and the correspondence between
the time-domain data z, and the frequency-domain data x.

index z x = FFT(z)

0 z(t = 0) x(f = 0)

1 z(t = 1) x(f = 1/(N Delta))
2 z(t = 2) x(f = 2/(N Delta))
N/2 2(t = N/2) x(f = +1/(2 Delta),

-1/(2 Delta))

N-3 2(t = N-3) x(f = -3/(N Delta))
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2 z(t = N-2) x(f = -2/(N Delta))

1 z(t = N-1) x(f -1/(N Delta))

When N is even the location N/2 contains the most positive and negative frequencies
+1/(2A), —1/(2A)) which are equivalent. If N is odd then general structure of the table
above still applies, but N/2 does not appear.

N_
N_

15.3 Radix-2 FFT routines for complex data

The radix-2 algorithms described in this section are simple and compact, although not
necessarily the most efficient. They use the Cooley-Tukey algorithm to compute in-place
complex FFTs for lengths which are a power of 2 — no additional storage is required. The
corresponding self-sorting mixed-radix routines offer better performance at the expense of
requiring additional working space.

All these functions are declared in the header file ‘gs1_fft_complex.h’.

int gsl fft_complex_radix2_forward (gsl_complex_packed_array Function
datal], size_t stride, size_t n)

int gsl _fft_complex_radix2_transform Function
(gsl_complex_packed_array data[], size_t stride, size_t n)

int gsl_fft_complex_radix2_backward Function
(gsl_complex_packed_array datal], size_t stride, size_t n)

int gsl fft_complex_radix2_inverse (gsl_complex_packed_array Function

datal], size_t stride, size_t n)
These functions compute forward, backward and inverse FFTs of length n with stride
stride, on the packed complex array data using an in-place radix-2 decimation-in-time
algorithm. The length of the transform n is restricted to powers of two.

The functions return a value of GSL_SUCCESS if no errors were detected, or GSL_EDOM
if the length of the data n is not a power of two.

int gsl _fft_complex_radix2_dif_forward Function
(gsl_complex_packed_array datal], size_t stride, size_t n)

int gsl_fft_complex_radix2_dif_transform Function
(gsl_complex_packed_array datal], size_t stride, size_t n)

int gsl _fft_complex_radix2_dif_backward Function
(gsl_complex_packed_array data[|], size_t stride, size_t n)

int gsl_fft_complex_radix2_dif_inverse Function

(gsl_complex_packed_array datal], size_t stride, size_t n)
These are decimation-in-frequency versions of the radix-2 FFT functions.

Here is an example program which computes the FFT of a short pulse in a sample of
length 128. To make the resulting fourier transform real the pulse is defined for equal
positive and negative times (—10 ... 10), where the negative times wrap around the end
of the array.

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_errno.h>
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#include <gsl/gsl_fft_complex.h>

#define REAL(z,i) ((=2)[2x(i)])
#define IMAG(z,i) ((z)[2x(i)+1]1)

int
main (void)
{

int 1i;

double datal[2%128];

for (i = 0; i < 128; i++)
{

REAL(data,i) =

IMAG(data,i)

s

0.0
0.0

3

}
REAL(data,0) = 1.0;

for (i = 1; i <= 10; i++)
{
REAL(data,i) = REAL(data,128-i) = 1.0;
}

for (i = 0; i < 128; i++)
{
printf ("/d %e %e\n", i,
REAL(data,i), IMAG(data,i));
}
printf ("\n");

gsl_fft_complex_radix2_forward (data, 1, 128);

for (i = 0; i < 128; i++)
{
printf ("/d %e %e\n", i,
REAL(data,i)/sqrt(128),
IMAG(data,i)/sqrt(128));
}

return O;

Note that we have assumed that the program is using the default error handler (which calls
abort for any errors). If you are not using a safe error handler you would need to check
the return status of gsl_fft_complex_radix2_forward.

The transformed data is rescaled by 1/v/N so that it fits on the same plot as the input.
Only the real part is shown, by the choice of the input data the imaginary part is zero.
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Allowing for the wrap-around of negative times at ¢ = 128, and working in units of k/N,
the DFT approximates the continuum fourier transform, giving a modulated sin function.
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A pulse and its discrete fourier transform, output from
the example program.

15.4 Mixed-radix FFT routines for complex data

This section describes mixed-radix FFT algorithms for complex data. The mixed-radix
functions work for FFTs of any length. They are a reimplementation of the Fortran FFTPACK
library by Paul Swarztrauber. The theory is explained in the review article Self-sorting
Mixed-radix FFTs by Clive Temperton. The routines here use the same indexing scheme
and basic algorithms as FFTPACK.

The mixed-radix algorithm is based on sub-transform modules — highly optimized small
length FFTs which are combined to create larger FFTs. There are efficient modules for
factors of 2, 3, 4, 5, 6 and 7. The modules for the composite factors of 4 and 6 are faster
than combining the modules for 2 % 2 and 2 % 3.
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For factors which are not implemented as modules there is a fall-back to a general length-
n module which uses Singleton’s method for efficiently computing a DFT. This module is
O(n?), and slower than a dedicated module would be but works for any length n. Of course,
lengths which use the general length-n module will still be factorized as much as possible.
For example, a length of 143 will be factorized into 11x13. Large prime factors are the worst
case scenario, e.g. as found in n = 2% 3% 99991, and should be avoided because their O(n?)
scaling will dominate the run-time (consult the document GSL FFT Algorithms included
in the GSL distribution if you encounter this problem).

The mixed-radix initialization function gsl_fft_complex_wavetable_alloc returns the
list of factors chosen by the library for a given length N. It can be used to check how well
the length has been factorized, and estimate the run-time. To a first approximation the
run-time scales as N Y f;, where the f; are the factors of V. For programs under user
control you may wish to issue a warning that the transform will be slow when the length
is poorly factorized. If you frequently encounter data lengths which cannot be factorized
using the existing small-prime modules consult GSL FFT Algorithms for details on adding
support for other factors.

All these functions are declared in the header file ‘gs1_fft_complex.h’.

gsl_fft_complex_wavetable * gsl_fft_complex_wavetable_alloc Function
(size_t n)

This function prepares a trigonometric lookup table for a complex FFT of length n.
The function returns a pointer to the newly allocated gsl_fft_complex_wavetable
if no errors were detected, and a null pointer in the case of error. The length n is
factorized into a product of subtransforms, and the factors and their trigonometric
coefficients are stored in the wavetable. The trigonometric coefficients are computed
using direct calls to sin and cos, for accuracy. Recursion relations could be used to
compute the lookup table faster, but if an application performs many FFTs of the
same length then this computation is a one-off overhead which does not affect the
final throughput.

The wavetable structure can be used repeatedly for any transform of the same length.
The table is not modified by calls to any of the other FFT functions. The same
wavetable can be used for both forward and backward (or inverse) transforms of a
given length.

void gsl_fft_complex_wavetable_free Function
(gsl_fft_complex_wavetable * wavetable)
This function frees the memory associated with the wavetable wavetable. The
wavetable can be freed if no further FFTs of the same length will be needed.

These functions operate on a gsl_fft_complex_wavetable structure which contains inter-
nal parameters for the FFT. It is not necessary to set any of the components directly but
it can sometimes be useful to examine them. For example, the chosen factorization of the
FFT length is given and can be used to provide an estimate of the run-time or numerical
error.

The wavetable structure is declared in the header file ‘gs1_fft_complex.h’.
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gsl_fft_complex_wavetable Data Type
This is a structure that holds the factorization and trigonometric lookup tables for
the mixed radix fft algorithm. It has the following components:

size_t n This is the number of complex data points
size_t nf This is the number of factors that the length n was decomposed into.

size_t factor[64]
This is the array of factors. Only the first nf elements are used.

gsl_complex * trig
This is a pointer to a preallocated trigonometric lookup table of n complex
elements.

gsl_complex * twiddle[64]
This is an array of pointers into trig, giving the twiddle factors for each
pass.

The mixed radix algorithms require an additional working space to hold the intermediate
steps of the transform.

gsl_fft_complex_workspace * gsl fft_complex_workspace_alloc Function
(size_t n)
This function allocates a workspace for a complex transform of length n.

void gsl_fft_complex_workspace_free Function
(gsl_fft_complex_workspace * workspace)
This function frees the memory associated with the workspace workspace. The
workspace can be freed if no further FFTs of the same length will be needed.

The following functions compute the transform,

int gsl fft_complex_forward (gsl_complex_packed_array data[], Function
size_t stride, size_t n, const gsl_fft_complex_wavetable * wavetable,
gsl_fft_complex_workspace * work)
int gsl ffit_complex_transform (gsl_complex_packed_array datal], Function
size_t stride, size_t n, const gsl_fft_complex_wavetable * wavetable,
gsl_fft_complex_workspace * work)
int gsl fft_complex_backward (gsl_complex_packed_array datal, Function
size_t stride, size_t n, const gsl_fft_complex_wavetable * wavetable,
gsl_fft_complex_workspace * Work)
int gsl fft_complex_inverse (gsl_complex_packed_array datal, Function
size_t stride, size_t n, const gsl_fft_complex_wavetable * wavetable,
gsl_fft_complex_workspace * work)
These functions compute forward, backward and inverse FF'Ts of length n with stride
stride, on the packed complex array data, using a mixed radix decimation-in-frequency
algorithm. There is no restriction on the length n. Efficient modules are provided for
subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are computed with



Chapter 15: Fast Fourier Transforms (FFTs) 152

a slow, O(n?), general-n module. The caller must supply a wavetable containing the
trigonometric lookup tables and a workspace work.

The functions return a value of 0 if no errors were detected. The following gs1_errno
conditions are defined for these functions:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_EINVAL
The length of the data n and the length used to compute the given
wavetable do not match.

Here is an example program which computes the FFT of a short pulse in a sample of
length 630 (= 2% 3% 3% 5% 7) using the mixed-radix algorithm.
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>

#define REAL(z,i) ((z)[2*%(i)])
#define IMAG(z,i) ((z) [2*(i)+1])

int
main (void)
{

int i;

const int n = 630;
double data[2#*n];

gsl_fft_complex_wavetable * wavetable;
gsl_fft_complex_workspace * workspace;

for (i = 0; i < n; i++)
{
REAL(data,i) =
IMAG(data,i)
}

0;
O.

0.
0.

3

datal[0] .real = 1.0;

for (i = 1; i <= 10; i++)
{
REAL(data,i) = REAL(data,n-i) = 1.0;
}

for (i = 0; i < n; i++)
{
printf ("%d: %e %e\n", i, REAL(data,i),
IMAG(data,i));
}
printf ("\n");
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wavetable = gsl_fft_complex_wavetable_alloc (n);
workspace = gsl_fft_complex_workspace_alloc (n);

for (i = 0; i < wavetable->nf; i++)
{
printf("# factor %d: %d\n", i,
wavetable->factor[i]);

}

gsl_fft_complex_forward (data, 1, n,
wavetable, workspace);

for (i = 0; i < n; i++)
{
printf ("%d: %e %e\n", i, REAL(data,i),
IMAG(data,i));
}

gsl_fft_complex_wavetable_free (wavetable);
gsl_fft_complex_workspace_free (workspace);
return O;

¥

Note that we have assumed that the program is using the default gsl error handler (which
calls abort for any errors). If you are not using a safe error handler you would need to
check the return status of all the gsl routines.

15.5 Overview of real data FFTs

The functions for real data are similar to those for complex data. However, there is an
important difference between forward and inverse transforms. The fourier transform of a
real sequence is not real. It is a complex sequence with a special symmetry:

*
k= AN—k

A sequence with this symmetry is called conjugate-complex or half-complex. This different
structure requires different storage layouts for the forward transform (from real to half-
complex) and inverse transform (from half-complex back to real). As a consequence the
routines are divided into two sets: functions in gsl_fft_real which operate on real se-
quences and functions in gsl_fft_halfcomplex which operate on half-complex sequences.

Functions in gsl_fft_real compute the frequency coeflicients of a real sequence. The

half-complex coefficients ¢ of a real sequence = are given by fourier analysis,

N-1

oL = Z x exp(—2mijk/N)

7=0
Functions in gsl_fft_halfcomplex compute inverse or backwards transforms. They re-
construct real sequences by fourier synthesis from their half-complex frequency coefficients,
c?
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N-1
x; = % kZ:O ¢ exp(2mijk/N)

The symmetry of the half-complex sequence implies that only half of the complex numbers
in the output need to be stored. The remaining half can be reconstructed using the half-
complex symmetry condition. (This works for all lengths, even and odd. When the length is
even the middle value, where k = N/2, is also real). Thus only N real numbers are required
to store the half-complex sequence, and the transform of a real sequence can be stored in
the same size array as the original data.

The precise storage arrangements depend on the algorithm, and are different for radix-
2 and mixed-radix routines. The radix-2 function operates in-place, which constrain the
locations where each element can be stored. The restriction forces real and imaginary
parts to be stored far apart. The mixed-radix algorithm does not have this restriction, and
it stores the real and imaginary parts of a given term in neighboring locations. This is
desirable for better locality of memory accesses.

15.6 Radix-2 FFT routines for real data

This section describes radix-2 FFT algorithms for real data. They use the Cooley-Tukey
algorithm to compute in-place FFTs for lengths which are a power of 2.

The radix-2 FF'T functions for real data are declared in the header files ‘gs1_fft_real.h’

int gsl fft_real radix2_transform (double data[], size_t stride, Function
size_t n)

This function computes an in-place radix-2 FFT of length n and stride stride on the
real array data. The output is a half-complex sequence, which is stored in-place. The
arrangement of the half-complex terms uses the following scheme: for k& < N/2 the
real part of the k-th term is stored in location k, and the corresponding imaginary
part is stored in location N — k. Terms with &k > N/2 can be reconstructed using the
symmetry z, = zy_,. The terms for k = 0 and k = N/2 are both purely real, and
count as a special case. Their real parts are stored in locations 0 and N/2 respectively,
while their imaginary parts which are zero are not stored.

The following table shows the correspondence between the output data and the equiv-
alent results obtained by considering the input data as a complex sequence with zero
imaginary part,

complex[0] .real = datal[0]
complex[0] . imag = 0
complex[1].real = data[1]
complex[1].imag = data[N-1]
complex[k] .real = data[k]
complex[k] .imag = datal[N-k]
complex[N/2] .real = data[N/2]

I
o

complex[N/2] .real
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complex[k’].real = datalk] k? =N -k
complex[k’].imag = -datal[N-k]

complex[N-1] .real = datal[1]

complex[N-1] .imag =  -datal[N-1]

The radix-2 FFT functions for halfcomplex data are declared in the header file
‘gsl_fft_halfcomplex.h’.

int gsl _fft_halfcomplex_radix2_inverse (double data[], size_t Function
stride, size_t n)
int gsl fft_halfcomplex_radix2_backward (double data[], size_t Function

stride, size_t n)
These functions compute the inverse or backwards in-place radix-2 FFT of length
n and stride stride on the half-complex sequence data stored according the output
scheme used by gsl_fft_real_radix2. The result is a real array stored in natural
order.

15.7 Mixed-radix FFT routines for real data

This section describes mixed-radix FFT algorithms for real data. The mixed-radix func-
tions work for FFTs of any length. They are a reimplementation of the real-FFT routines
in the Fortran FFTPACK library by Paul Swarztrauber. The theory behind the algorithm
is explained in the article Fast Mixed-Radix Real Fourier Transforms by Clive Temperton.
The routines here use the same indexing scheme and basic algorithms as FFTPACK.

The functions use the FFTPACK storage convention for half-complex sequences. In this
convention the half-complex transform of a real sequence is stored with frequencies in in-
creasing order, starting at zero, with the real and imaginary parts of each frequency in
neighboring locations. When a value is known to be real the imaginary part is not stored.
The imaginary part of the zero-frequency component is never stored. It is known to be zero
(since the zero frequency component is simply the sum of the input data (all real)). For a
sequence of even length the imaginary part of the frequency n/2 is not stored either, since
the symmetry z, = zj_, implies that this is purely real too.

The storage scheme is best shown by some examples. The table below shows the output
for an odd-length sequence, n = 5. The two columns give the correspondence between the 5
values in the half-complex sequence returned by gsl_fft_real_transform, halfcomplex]|]
and the values complex|| that would be returned if the same real input sequence were passed
to gsl_fft_complex_backward as a complex sequence (with imaginary parts set to 0),

complex[0].real = halfcomplex[0]
complex[0].imag = 0

complex[1] .real = halfcomplex[1]
complex[1].imag = halfcomplex[2]
complex[2] .real = halfcomplex[3]
complex[2] .imag = halfcomplex[4]
complex[3].real = halfcomplex[3]
complex[3].imag = -halfcomplex[4]
complex[4] .real = halfcomplex[1]
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complex[4] .imag = -halfcomplex[2]

The upper elements of the complex array, complex[3] and complex[4] are filled in using
the symmetry condition. The imaginary part of the zero-frequency term complex[0] .imag
is known to be zero by the symmetry.

The next table shows the output for an even-length sequence, n = 5 In the even case
there are two values which are purely real,

complex[0] .real = halfcomplex[O0]
complex[0] .imag = O

complex[1].real = halfcomplex[1]
complex[1].imag = halfcomplex[2]
complex[2] .real = halfcomplex[3]
complex[2] .imag = halfcomplex[4]
complex[3].real = halfcomplex[5]
complex[3].imag = O

complex[4] .real = halfcomplex[3]
complex[4].imag = -halfcomplex[4]
complex[5] .real = halfcomplex[1]
complex[5] .imag = -halfcomplex[2]

The upper elements of the complex array, complex[4] and complex[5] are filled in using
the symmetry condition. Both complex[0].imag and complex[3].imag are known to be

Zero.

All these functions are declared in the header files ‘gsl_fft_real.h’ and
‘gsl_fft_halfcomplex.h’.

gsl_fft_real_wavetable * gsl fft_real wavetable_alloc (size_t Function
n)
gsl_fft_halfcomplex_wavetable * Function

gsl_fft_halfcomplex_wavetable_alloc (size_t n)

These functions prepare trigonometric lookup tables for an FFT of size n real ele-
ments. The functions return a pointer to the newly allocated struct if no errors were
detected, and a null pointer in the case of error. The length n is factorized into
a product of subtransforms, and the factors and their trigonometric coefficients are
stored in the wavetable. The trigonometric coefficients are computed using direct
calls to sin and cos, for accuracy. Recursion relations could be used to compute the
lookup table faster, but if an application performs many FFTs of the same length
then computing the wavetable is a one-off overhead which does not affect the final
throughput.

The wavetable structure can be used repeatedly for any transform of the same length.
The table is not modified by calls to any of the other FFT functions. The appropriate
type of wavetable must be used for forward real or inverse half-complex transforms.

void gsl_fft_real wavetable_free (gsl_fft_real_wavetable * Function
wavetable)
void gsl_fft_halfcomplex_wavetable_free Function

(gsl_fft_halfcomplex_wavetable * wavetable)
These functions free the memory associated with the wavetable wavetable. The
wavetable can be freed if no further FFTs of the same length will be needed.
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The mixed radix algorithms require an additional working space to hold the intermediate
steps of the transform,

gsl_fft_real_workspace * gsl fft_real workspace_alloc (size_t Function
n)
This function allocates a workspace for a real transform of length n. The same
workspace is used for both forward real and inverse halfcomplex transforms.

void gsl_fft_real workspace_free (gsl_fft_real_workspace * Function
workspace)
This function frees the memory associated with the workspace workspace. The
workspace can be freed if no further FFTs of the same length will be needed.

The following functions compute the transforms of real and half-complex data,

int gsl _fft_real transform (double data||, size_t stride, size_t n, Function
const gsl_fft_real_wavetable * wavetable, gsl_fft_real_workspace *
work)

int gsl_fft_halfcomplex_transform (double datal], size_t stride, Function

size_t n, const gsl_fft_halfcomplex_wavetable * wavetable,

gsl_fft_real_workspace * work)
These functions compute the FFT of data, a real or half-complex array of length n, us-
ing a mixed radix decimation-in-frequency algorithm. For gs1_fft_real_transform
data is an array of time-ordered real data. For gsl_fft_halfcomplex_transform
data contains fourier coeflicients in the half-complex ordering described above. There
is no restriction on the length n. Efficient modules are provided for subtransforms of
length 2, 3, 4 and 5. Any remaining factors are computed with a slow, O(n?), general-
n module. The caller must supply a wavetable containing trigonometric lookup tables
and a workspace work.

int gsl _fft_real unpack (const double real_coefficient||, Function
gsl_complex_packed_array complex_coefficient||, size_t stride, size_t n)
This function converts a single real array, real_coefficient into an equivalent complex
array, complex_coefficient, (with imaginary part set to zero), suitable for gsl_fft_
complex routines. The algorithm for the conversion is simply,
for (i = 0; i < n; i++)
{
complex_coefficient[i].real
= real_coefficient[i];
complex_coefficient[i].imag
= 0.0;
}

int gsl _fft_halfcomplex_unpack (const double Function
halfcomplex_coefficient||, gsl_complex_packed_array complex_coefficient][],
size_t stride, size_t n)
This function converts halfcomplex_coefficient, an array of half-complex coeflicients
as returned by gsl_fft_real_transform, into an ordinary complex array, com-
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plex_coefficient. It fills in the complex array using the symmetry z, = z3_, to
reconstruct the redundant elements. The algorithm for the conversion is,

complex_coefficient[0] .real

= halfcomplex_coefficient[0];
complex_coefficient[0].imag

= 0.0;

for (i = 1; i < n - i; i++)
{

double hc_real

= halfcomplex_coefficient[2 * i - 1];
double hc_imag

= halfcomplex_coefficient[2 * i];
complex_coefficient[i] .real = hc_real;
complex_coefficient[i].imag = hc_imag;
complex_coefficient[n - i].real = hc_real;
complex_coefficient[n - i].imag = -hc_imag;

}

if (i == n - 1)
{
complex_coefficient[i].real
= halfcomplex_coefficient[n - 1];
complex_coefficient[i] .imag
= 0.0;
}

Here is an example program using gsl_fft_real_transform and gsl_fft_
halfcomplex_inverse. It generates a real signal in the shape of a square pulse. The pulse
is fourier transformed to frequency space, and all but the lowest ten frequency components
are removed from the array of fourier coefficients returned by gsl_fft_real_transform.

The remaining fourier coefficients are transformed back to the time-domain, to give a
filtered version of the square pulse. Since fourier coefficients are stored using the half-
complex symmetry both positive and negative frequencies are removed and the final filtered
signal is also real.

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_errno.h>

#include <gsl/gsl fft_real.h>
#include <gsl/gsl_fft_halfcomplex.h>

int

main (void)

{
int i, n = 100;
double datal[n];

gsl_fft_real_wavetable * real;
gsl_fft_halfcomplex_wavetable * hc;
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gsl_fft_real_workspace * work;

for (i = 0; i < n; i++)

{
datal[i] = 0.0;
}
for (i =n/ 3; i<2%*mn/ 3; it+)
{
datal[i] = 1.0;
}
for (i = 0; i < m; i++)
{
printf ("%d: %e\n", i, datalil);
}

printf ("\n");

work
real

gsl_fft_real_workspace_alloc (n);
gsl_fft_real_wavetable_alloc (n);

gsl_fft_real_transform (data, 1, n,
real, work);

gsl_fft_real_wavetable_free (real);

for (i = 11; i < n; i++)
{
datal[i] = O;
}

hc = gsl_fft_halfcomplex_wavetable_alloc (n);

gsl_fft_halfcomplex_inverse (data, 1, n,
hc, work);
gsl_fft_halfcomplex_wavetable_free (hc);

for (i = 0; i < n; i++)
{
printf ("%d: %e\n", i, datalil);
}

gsl_fft_real_workspace_free (work);
return O;
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Low-pass filtered version of a real pulse,
output from the example program.

15.8 References and Further Reading

A good starting point for learning more about the FFT is the review article Fast Fourier
Transforms: A Tutorial Review and A State of the Art by Duhamel and Vetterli,

P. Duhamel and M. Vetterli. Fast fourier transforms: A tutorial review and a state of
the art. Signal Processing, 19:259-299, 1990.

To find out about the algorithms used in the GSL routines you may want to consult the
latex document GSL FFT Algorithms (it is included in GSL, as ‘doc/fftalgorithms.tex’).
This has general information on FFTs and explicit derivations of the implementation for
each routine. There are also references to the relevant literature. For convenience some of
the more important references are reproduced below.

There are several introductory books on the FFT with example programs, such as The Fast
Fourier Transform by Brigham and DF'T/FFT and Convolution Algorithms by Burrus and
Parks,

E. Oran Brigham. The Fast Fourier Transform. Prentice Hall, 1974.

C. S. Burrus and T. W. Parks. DFT/FFT and Convolution Algorithms. Wiley, 1984.
Both these introductory books cover the radix-2 FFT in some detail. The mixed-radix
algorithm at the heart of the FFTPACK routines is reviewed in Clive Temperton’s paper,

Clive Temperton. Self-sorting mixed-radix fast fourier transforms. Journal of Compu-

tational Physics, 52(1):1-23, 1983.

The derivation of FFTs for real-valued data is explained in the following two articles,

Henrik V. Sorenson, Douglas L. Jones, Michael T. Heideman, and C. Sidney Bur-
rus. Real-valued fast fourier transform algorithms. IEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-35(6):849-863, 1987.
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Clive Temperton. Fast mixed-radix real fourier transforms. Journal of Computational
Physics, 52:340-350, 1983.

In 1979 the IEEE published a compendium of carefully-reviewed Fortran FFT programs in
Programs for Digital Signal Processing. It is a useful reference for implementations of many
different FFT algorithms,

Digital Signal Processing Committee and IEEE Acoustics, Speech, and Signal Process-
ing Committee, editors. Programs for Digital Signal Processing. IEEE Press, 1979.

For serious FFT work we recommend the use of the dedicated FFTW library by Frigo and
Johnson. The FFTW library is self-optimizing — it automatically tunes itself for each
hardware platform in order to achieve maximum performance. It is available under the
GNU GPL.

FFTW Website, http://www.fftw.org/
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16 Numerical Integration

This chapter describes routines for performing numerical integration (quadrature) of a
function in one dimension. There are routines for adaptive and non-adaptive integration
of general functions, with specialised routines for specific cases. These include integration
over infinite and semi-infinite ranges, singular integrals, including logarithmic singularities,
computation of Cauchy principal values and oscillatory integrals. The library reimplements
the algorithms used in QUADPACK, a numerical integration package written by Piessens,
Doncker-Kapenga, Uberhuber and Kahaner. Fortran code for QUADPACK is available on
Netlib.

The functions described in this chapter are declared in the header file
‘gsl_integration.h’.

16.1 Introduction

Each algorithm computes an approximation to a definite integral of the form,

I= /ab f(@)w(z)dz

where w(zx) is a weight function (for general integrands w(xz) = 1). The user provides
absolute and relative error bounds (epsabs, epsrel) which specify the following accuracy
requirement,

|RESULT — I| < max(epsabs, epsrel|I|)

where RESULT is the numerical approximation obtained by the algorithm. The algorithms
attempt to estimate the absolute error ABSERR = |RESULT — 1| in such a way that the
following inequality holds,

|RESULT — I| < ABSERR < max(epsabs, epsrel |I|)

The routines will fail to converge if the error bounds are too stringent, but always return
the best approximation obtained up to that stage.

The algorithms in QUADPACK use a naming convention based on the following letters,
Q - quadrature routine

N - non-adaptive integrator
A - adaptive integrator

G - general integrand (user-defined)
W - weight function with integrand

S - singularities can be more readily integrated
P - points of special difficulty can be supplied
I - infinite range of integration

0 - oscillatory weight function, cos or sin

F - Fourier integral

C - Cauchy principal value

The algorithms are built on pairs of quadrature rules, a higher order rule and a lower order
rule. The higher order rule is used to compute the best approximation to an integral over a
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small range. The difference between the results of the higher order rule and the lower order
rule gives an estimate of the error in the approximation.

The algorithms for general functions (without a weight function) are based on Gauss-
Kronrod rules. A Gauss-Kronrod rule begins with a classical Gaussian quadrature rule of
order m. This is extended with additional points between each of the abscissae to give a
higher order Kronrod rule of order 2m + 1. The Kronrod rule is efficient because it reuses
existing function evaluations from the Gaussian rule. The higher order Kronrod rule is used
as the best approximation to the integral, and the difference between the two rules is used
as an estimate of the error in the approximation.

For integrands with weight functions the algorithms use Clenshaw-Curtis quadrature
rules. A Clenshaw-Curtis rule begins with an n-th order Chebyschev polynomial approxi-
mation to the integrand. This polynomial can be integrated exactly to give an approxima-
tion to the integral of the original function. The Chebyschev expansion can be extended to
higher orders to improve the approximation. The presence of singularities (or other behav-
ior) in the integrand can cause slow convergence in the Chebyschev approximation. The
modified Clenshaw-Curtis rules used in QUADPACK separate out several common weight
functions which cause slow convergence. These weight functions are integrated analytically
against the Chebyschev polynomials to precompute modified Chebyschev moments. Com-
bining the moments with the Chebyschev approximation to the function gives the desired
integral. The use of analytic integration for the singular part of the function allows exact
cancellations and substantially improves the overall convergence behavior of the integration.

16.2 QNG non-adaptive Gauss-Kronrod integration

The QNG algorithm is non-adaptive procedure which uses fixed Gauss-Kronrod abscissae
to sample the integrand at a maximum of 87 points. It is provided for fast integration of
smooth functions.

int gsl integration_qng (const gsl_function *f, double a, double Function
b, double epsabs, double epsrel, double * result, double * abserr, size_t *
neval)

This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point
integration rules in succession until an estimate of the integral of f over (a,b) is
achieved within the desired absolute and relative error limits, epsabs and epsrel. The
function returns the final approximation, result, an estimate of the absolute error,
abserr and the number of function evaluations used, neval. The Gauss-Kronrod rules
are designed in such a way that each rule uses all the results of its predecessors, in
order to minimize the total number of function evaluations.

16.3 QAG adaptive integration

The QAG algorithm is a simple adaptive integration procedure. The integration region
is divided into subintervals, and on each iteration the subinterval with the largest estimated
error is bisected. This reduces the overall error rapidly, as the subintervals become con-
centrated around local difficulties in the integrand. These subintervals are managed by a
gsl_integration_workspace struct, which handles the memory for the subinterval ranges,
results and error estimates.
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gsl_integration_workspace * gsl_integration_workspace_alloc Function
(size_t n)
This function allocates a workspace sufficient to hold n double precision intervals,
their integration results and error estimates.

void gsl_integration_workspace_free Function
(gsl_integration_workspace * w)
This function frees the memory associated with the workspace w.

int gsl integration_qag (const gsl_function *f, double a, double Function
b, double epsabs, double epsrel, size_t limit, int key,
gsl_integration_workspace * workspace, double * result, double * abserr)

This function applies an integration rule adaptively until an estimate of the integral
of f over (a,b) is achieved within the desired absolute and relative error limits, epsabs
and epsrel. The function returns the final approximation, result, and an estimate of
the absolute error, abserr. The integration rule is determined by the value of key,
which should be chosen from the following symbolic names,

GSL_INTEG_GAUSS15 (key = 1)

GSL_INTEG_GAUSS21 (key = 2)

GSL_INTEG_GAUSS31 (key = 3)

GSL_INTEG_GAUSS41 (key = 4)

GSL_INTEG_GAUSS51 (key = 5)

GSL_INTEG_GAUSS61 (key = 6)

corresponding to the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod rules. The
higher-order rules give better accuracy for smooth functions, while lower-order rules
save time when the function contains local difficulties, such as discontinuities.

On each iteration the adaptive integration strategy bisects the interval with the largest
error estimate. The subintervals and their results are stored in the memory provided
by workspace. The maximum number of subintervals is given by limit, which may
not exceed the allocated size of the workspace.

16.4 QAGS adaptive integration with singularities

The presence of an integrable singularity in the integration region causes an adaptive
routine to concentrate new subintervals around the singularity. As the subintervals decrease
in size the successive approximations to the integral converge in a limiting fashion. This
approach to the limit can be accelerated using an extrapolation procedure. The QAGS
algorithm combines adaptive bisection with the Wynn epsilon-algorithm to speed up the
integration of many types of integrable singularities.

int gsl_integration_qags (const gsl_function * f, double a, Function
double b, double epsabs, double epsrel, size_t limit,
gsl_integration_workspace * workspace, double *result, double *abserr)
This function applies the Gauss-Kronrod 21-point integration rule adaptively until
an estimate of the integral of f over (a,b) is achieved within the desired absolute
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and relative error limits, epsabs and epsrel. The results are extrapolated using the
epsilon-algorithm, which accelerates the convergence of the integral in the presence
of discontinuities and integrable singularities. The function returns the final approx-
imation from the extrapolation, result, and an estimate of the absolute error, abserr.
The subintervals and their results are stored in the memory provided by workspace.
The maximum number of subintervals is given by limit, which may not exceed the
allocated size of the workspace.

16.5 QAGP adaptive integration with known singular points

int gsl integration_qagp (const gsl_function * f, double *pts, Function

size_t npts, double epsabs, double epsrel, size_t limit,
gsl_integration_workspace * workspace, double *result, double *abserr)

This function applies the adaptive integration algorithm QAGS taking account of the

user-supplied locations of singular points. The array pts of length npts should contain

the endpoints of the integration ranges defined by the integration region and locations

of the singularities. For example, to integrate over the region (a,b) with break-points

at 1,29, x3 (Where a < x1 < x9 < x3 < b) the following pts array should be used

pts[0] = a

pts[1] = x_1

pts[2] = x_2

pts[3] = x_3

ptsl4] = b
with npts = 5.

If you know the locations of the singular points in the integration region then this
routine will be faster than QAGS.

16.6 QAGI adaptive integration on infinite intervals

int gsl integration_qagi (gsl_function * f, double epsabs, double Function
epsrel, size_t limit, gsl_integration_workspace * workspace, double
xresult, double *abserr)
This function computes the integral of the function f over the infinite interval
(—00,+00). The integral is mapped onto the interval (0, 1] using the transformation
x=(1-1t)/t,

/_ dz f(z /dt FA=0/t) + f(—(1— 1) /1) /1.

It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod
rule of QAGS is replaced by a 15-point rule, because the transformation can generate
an integrable singularity at the origin. In this case a lower-order rule is more efficient.
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int gsl integration_qagiu (gsl_function * f, double a, double Function
epsabs, double epsrel, size_t limit, gsl_integration_workspace *
workspace, double *result, double *abserr)
This function computes the integral of the function f over the semi-infinite interval
(a,+00). The integral is mapped onto the interval (0,1] using the transformation
xr=a+ (1—1)/t,

/:OO dz f(z) = /Oldtf(a+ (1—1)/1)/¢

and then integrated using the QAGS algorithm.

int gsl integration_qagil (gsl_function * f, double b, double Function
epsabs, double epsrel, size_t limit, gsl_integration_workspace *
workspace, double *result, double *abserr)
This function computes the integral of the function f over the semi-infinite interval
(—o00,b). The integral is mapped onto the region (0,1] using the transformation
xr=b—(1-1)/t,

[ @)= [ atso- -y

and then integrated using the QAGS algorithm.

16.7 QAWC adaptive integration for Cauchy principal
values

int gsl integration_qawc (gsl_function *f, double a, double b, Function
double c, double epsabs, double epsrel, size_t limit,
gsl_integration_workspace * workspace, double * result, double * abserr)

This function computes the Cauchy principal value of the integral of f over (a,b),
with a singularity at c,

o fle) e flo) b f@)
I—/lexm_c—lg%{/l d:cx_c+ C+de:z:—c}

The adaptive bisection algorithm of QAG is used, with modifications to ensure that
subdivisions do not occur at the singular point x = ¢. When a subinterval contains
the point & = ¢ or is close to it then a special 25-point modified Clenshaw-Curtis rule
is used to control the singularity. Further away from the singularity the algorithm
uses an ordinary 15-point Gauss-Kronrod integration rule.

16.8 QAWS adaptive integration for singular functions

The QAWS algorithm is designed for integrands with algebraic-logarithmic singularities
at the end-points of an integration region. In order to work efficiently the algorithm requires
a precomputed table of Chebyschev moments.
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gsl_integration_qaws_table * Function
gsl_integration_qaws_table_alloc (double alpha, double beta, int mu,
int nu)

This function allocates space for a gsl_integration_qaws_table struct and asso-
ciated workspace describing a singular weight function W(x) with the parameters

(a7 /8’ /"L7 V)?
W(z) = (z —a)*(b— z)?log" (z — a)log” (b — x)

where o < —1, 8 < —1, and © = 0,1, v = 0,1. The weight function can take four
different forms depending on the values of u and v,

W) = (2 — ) (b — ) (4=0.0=0)
W(z) = (z — a)*(b— )" log(z — a) (n=1,v=0)
W(z) = (z —a)*(b—x) log(b — z) (bn=0,vr=1)
W(z) = (z —a)*(b— ) log(z — a)log(b—z) (u=1,v=1)

The singular points (a,b) do not have to be specified until the integral is computed,
where they are the endpoints of the integration range.

The function returns a pointer to the newly allocated gsl_integration_gaws_table
if no errors were detected, and 0 in the case of error.

int gsl integration_qaws_table_set (gsl_integration_qaws_table Function
* t, double alpha, double beta, int mu, int nu)
This function modifies the parameters («, 3, u, v) of an existing gsl_integration_
gaws_table struct ¢t.

void gsl_integration_qaws_table_free Function
(gsl_integration_gaws_table * t)
This function frees all the memory associated with the gsl_integration_qaws_table
struct t.

int gsl integration_qaws (gsl_function * f, const double a, Function
const double b, gsl_integration_qaws_table * t, const double epsabs,
const double epsrel, const size_t limit, gsl_integration_workspace *
workspace, double *result, double *abserr)
This function computes the integral of the function f(z) over the interval (a,b) with
the singular weight function (z — a)*(b — x)?log" (2 — a)log” (b — ). The parameters
of the weight function («, 3, i, v) are taken from the table ¢t. The integral is,

1 :/a dz f(z)(x — a)*(b — x)" log"(x — a) log” (b — z).

The adaptive bisection algorithm of QAG is used. When a subinterval contains one
of the endpoints then a special 25-point modified Clenshaw-Curtis rule is used to
control the singularities. For subintervals which do not include the endpoints an
ordinary 15-point Gauss-Kronrod integration rule is used.
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16.9 QAWO adaptive integration for oscillatory functions

The QAWO algorithm is designed for integrands with an oscillatory factor, sin(wz) or
cos(wz). In order to work efficiently the algorithm requires a table of Chebyschev moments
which must be pre-computed with calls to the functions below.

gsl_integration_gawo_table * Function
gsl_integration_qawo_table_alloc (double omega, double L, enum
gsl_integration_gawo_enum sine, size_t n)
This function allocates space for a gsl_integration_gawo_table struct and its asso-
ciated workspace describing a sine or cosine weight function W (z) with the parameters

(w, L),
Wi(z) = { sin(wx) }

cos(w)
The parameter L must be the length of the interval over which the function will be
integrated L = b — a. The choice of sine or cosine is made with the parameter sine
which should be chosen from one of the two following symbolic values:

GSL_INTEG_COSINE
GSL_INTEG_SINE

The gsl_integration_gawo_table is a table of the trigonometric coefficients re-
quired in the integration process. The parameter n determines the number of levels
of coefficients that are computed. Each level corresponds to one bisection of the
interval L, so that n levels are sufficient for subintervals down to the length L /2.
The integration routine gsl_integration_qgawo returns the error GSL_ETABLE if the
number of levels is insufficient for the requested accuracy.

int gsl_integration_qawo_table_set (gsl_integration_gawo_table Function
* t, double omega, double L, enum gsl_integration_qawo_enum sine)
This function changes the parameters omega, L and sine of the existing workspace t.

int gsl_integration_qawo_table_set_length Function
(gsl_integration_qgawo_table * t, double L)
This function allows the length parameter L of the workspace t to be changed.

void gsl_integration_qawo_table_free Function
(gsl_integration_qawo_table * t)
This function frees all the memory associated with the workspace t.

int gsl integration_qawo (gsl_function * f, const double a, Function
const double epsabs, const double epsrel, const size_t limit,
gsl_integration_workspace * workspace, gsl_integration_qawo_table *
wf, double *result, double *abserr)
This function uses an adaptive algorithm to compute the integral of f over (a,b) with
the weight function sin(wz) or cos(wz) defined by the table wft.

1= [Laese {50
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The results are extrapolated using the epsilon-algorithm to accelerate the convergence
of the integral. The function returns the final approximation from the extrapolation,
result, and an estimate of the absolute error, abserr. The subintervals and their
results are stored in the memory provided by workspace. The maximum number
of subintervals is given by limit, which may not exceed the allocated size of the
workspace.

Those subintervals with “large” widths d, dw > 4 are computed using a 25-point
Clenshaw-Curtis integration rule, which handles the oscillatory behavior. Subinter-
vals with a “small” width dw < 4 are computed using a 15-point Gauss-Kronrod
integration.

16.10 QAWF adaptive integration for Fourier integrals

int gsl integration_qawf (gsl_function * f, const double a, Function
const double epsabs, const size_t limit, gsl_integration_workspace *
workspace, gsl_integration_workspace * cycle_workspace,
gsl_integration_gawo_table * wf, double *result, double *abserr)
This function attempts to compute a Fourier integral of the function f over the semi-
infinite interval [a, +00).

I /a+°° dz f(z) { sin(wz) }

cos(w)

The parameter w is taken from the table wf (the length L can take any value, since
it is overridden by this function to a value appropriate for the fourier integration).
The integral is computed using the QAWO algorithm over each of the subintervals,

C'1 :[a,a—{—c]
Cy=la+c,a+ 2

Cr=la+ (k—1)c,a+ k|

where ¢ = (2floor(|w|) + 1)7/|w|. The width ¢ is chosen to cover an odd number of
periods so that the contributions from the intervals alternate in sign and are mono-
tonically decreasing when f is positive and monotonically decreasing. The sum of this
sequence of contributions is accelerated using the epsilon-algorithm.

This function works to an overall absolute tolerance of abserr. The following strategy
is used: on each interval C} the algorithm tries to achieve the tolerance

TOL;, = uyabserr

where u, = (1—p)p"~! and p = 9/10. The sum of the geometric series of contributions
from each interval gives an overall tolerance of abserr.

If the integration of a subinterval leads to difficulties then the accuracy requirement
for subsequent intervals is relaxed,

TOL;, = uy max(abserr, makx{EZ-})
1<k

where F), is the estimated error on the interval Cj,.
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The subintervals and their results are stored in the memory provided by workspace.
The maximum number of subintervals is given by limit, which may not exceed the
allocated size of the workspace. The integration over each subinterval uses the memory
provided by cycle_workspace as workspace for the QAWO algorithm.

16.11 Error codes

In addition to the standard error codes for invalid arguments the functions can return
the following values,

GSL_EMAXITER
the maximum number of subdivisions was exceeded.

GSL_EROUND
cannot reach tolerance because of roundoff error, or roundoff error was detected
in the extrapolation table.

GSL_ESING
a non-integrable singularity or other bad integrand behavior was found in the
integration interval.

GSL_EDIVERGE
the integral is divergent, or too slowly convergent to be integrated numerically.

16.12 Examples

The integrator QAGS will handle a large class of definite integrals. For example, consider
the following integral, which has a algebraic-logarithmic singularity at the origin,

1
/ x7 % log(z) do = —4
0

The program below computes this integral to a relative accuracy bound of 1e-7.

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_integration.h>

double f (double x, void * params) {
double alpha = *(double *) params;
double f = log(alpha*x) / sqrt(x);
return f;

¥

int
main (void)
{
gsl_integration_workspace * w
= gsl_integration_workspace_alloc(1000);

double result, error;
double expected = -4.0;
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double alpha = 1.0;

gsl_function F;
F.function = &f;
F.params = &alpha;

171

gsl_integration_qags (&F, 0, 1, 0, le-7, 1000,
w, &result, &error);

printf ("result =
printf ("exact result

printf ("estimated error
printf ("actual error =

/A

=%

b
b

.18f\n", result);

.18f\n", expected);

.18f\n", error);

.18f\n", result - expected);

printf ("intervals = %d\n", w->size);

return O;

}

The results below show that the desired accuracy is achieved after 8 subdivisions.

bash$ ./a.out
result
exact result

-3.999999999999973799
-4.000000000000000000

estimated error = 0.000000000000246025

actual error
intervals = 8

0.000000000000026201

In fact, the extrapolation procedure used by QAGS produces an accuracy of almost twice as
many digits. The error estimate returned by the extrapolation procedure is larger than the
actual error, giving a margin of safety of one order of magnitude.

16.13 References and Further Reading

The following book is the definitive reference for QUADPACK, and was written by the original
authors. It provides descriptions of the algorithms, program listings, test programs and
examples. It also includes useful advice on numerical integration and many references to
the numerical integration literature used in developing QUADPACK

R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, D.K. Kahaner. QUADPACK A
subroutine package for automatic integration Springer Verlag, 1983.
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17 Random Number Generation

The library provides a large collection of random number generators which can be ac-
cessed through a uniform interface. Environment variables allow you to select different
generators and seeds at runtime, so that you can easily switch between generators without
needing to recompile your program. KEach instance of a generator keeps track of its own
state, allowing the generators to be used in multi-threaded programs. Additional functions
are available for transforming uniform random numbers into samples from continuous or
discrete probability distributions such as the Gaussian, log-normal or Poisson distributions.

These functions are declared in the header file ‘gsl_rng.h’.

17.1 General comments on random numbers

In 1988, Park and Miller wrote a paper entitled “Random number generators: good ones
are hard to find.” [Commun. ACM, 31, 1192-1201]. Fortunately, some excellent random
number generators are available, though poor ones are still in common use. You may
be happy with the system-supplied random number generator on your computer, but you
should be aware that as computers get faster, requirements on random number generators
increase. Nowadays, a simulation that calls a random number generator millions of times
can often finish before you can make it down the hall to the coffee machine and back.

A very nice review of random number generators was written by Pierre L’Ecuyer, as
Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed. (Wiley, 1997). The
chapter is available in postscript from L’Ecuyer’s ftp site (see references). Knuth’s volume
on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to random
number generators, and has recently been updated in its 3rd edition (1997). It is brilliant, a
classic. If you don’t own it, you should stop reading right now, run to the nearest bookstore,
and buy it.

A good random number generator will satisfy both theoretical and statistical properties.
Theoretical properties are often hard to obtain (they require real math!), but one prefers
a random number generator with a long period, low serial correlation, and a tendency not
to “fall mainly on the planes.” Statistical tests are performed with numerical simulations.
Generally, a random number generator is used to estimate some quantity for which the
theory of probability provides an exact answer. Comparison to this exact answer provides
a measure of “randomness”.

17.2 The Random Number Generator Interface

It is important to remember that a random number generator is not a “real” function
like sine or cosine. Unlike real functions, successive calls to a random number generator
yield different return values. Of course that is just what you want for a random number
generator, but to achieve this effect, the generator must keep track of some kind of “state”
variable. Sometimes this state is just an integer (sometimes just the value of the previously
generated random number), but often it is more complicated than that and may involve a
whole array of numbers, possibly with some indices thrown in. To use the random number
generators, you do not need to know the details of what comprises the state, and besides
that varies from algorithm to algorithm.
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The random number generator library uses two special structs, gsl_rng_type which
holds static information about each type of generator and gsl_rng which describes an
instance of a generator created from a given gsl_rng_type.

The functions described in this section are declared in the header file ‘gsl_rng.h’.

17.3 Random number generator initialization

gsl_rng * gsl rng_alloc (const gsl_rng_type * T) Random
This function returns a pointer to a newly-created instance of a random number gener-
ator of type T. For example, the following code creates an instance of the Tausworthe
generator,

gsl_rng * r = gsl_rng alloc (gsl_rng_taus);

If there is insufficient memory to create the generator then the function returns a null
pointer and the error handler is invoked with an error code of GSL_ENOMEM.

The generator is automatically initialized with the default seed, gsl_rng_default_
seed. This is zero by default but can be changed either directly or by using the
environment variable GSL_RNG_SEED (see Section 17.6 [Random number environment
variables], page 175).

The details of the available generator types are described later in this chapter.

void gsl_rng set (const gsl_rng * r, unsigned long int s) Random

This function initializes (or ‘seeds’) the random number generator. If the generator
is seeded with the same value of s on two different runs, the same stream of random
numbers will be generated by successive calls to the routines below. If different
values of s are supplied, then the generated streams of random numbers should be
completely different. If the seed s is zero then the standard seed from the original
implementation is used instead. For example, the original Fortran source code for the
ranlux generator used a seed of 314159265, and so choosing s equal to zero reproduces
this when using gsl_rng_ranlux.

void gsl.rng free (gsl_rng * r) Random
This function frees all the memory associated with the generator r.

17.4 Sampling from a random number generator

The following functions return uniformly distributed random numbers, either as inte-
gers or double precision floating point numbers. To obtain non-uniform distributions see
Chapter 19 [Random Number Distributions|, page 192.

unsigned long int gsl rng get (const gsl_rng * r) Random
This function returns a random integer from the generator r. The minimum and
maximum values depend on the algorithm used, but all integers in the range [min,max]
are equally likely. The values of min and max can determined using the auxiliary
functions gsl_rng_max (r) and gsl_rng_min (r).
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double gsl rng uniform (const gsl_rng * r) Random
This function returns a double precision floating point number uniformly distributed
in the range [0,1). The range includes 0.0 but excludes 1.0. The value is typically
obtained by dividing the result of gs1_rng_get (r) by gsl_rng_max(r) + 1.0 in dou-
ble precision. Some generators compute this ratio internally so that they can provide
floating point numbers with more than 32 bits of randomness (the maximum number
of bits that can be portably represented in a single unsigned long int).

double gsl rng uniform_pos (const gsl_rng * r) Random
This function returns a positive double precision floating point number uniformly
distributed in the range (0,1), excluding both 0.0 and 1.0. The number is obtained
by sampling the generator with the algorithm of gsl_rng_uniform until a non-zero
value is obtained. You can use this function if you need to avoid a singularity at 0.0.

unsigned long int gsl rng uniform_int (const gsl_rng * r, Random
unsigned long int n)
This function returns a random integer from 0 to n-1 inclusive. All integers in the
range [0,n-1] are equally likely, regardless of the generator used. An offset correction is
applied so that zero is always returned with the correct probability, for any minimum
value of the underlying generator.

If n is larger than the range of the generator then the function calls the error handler
with an error code of GSL_EINVAL and returns zero.

17.5 Auxiliary random number generator functions

The following functions provide information about an existing generator. You should
use them in preference to hard-coding the generator parameters into your own code.

const char * gsl rng_name (const gsl_rng * r) Random
This function returns a pointer to the name of the generator. For example,
printf("r is a ’%s’ generator\n",
gsl_rng_name (r));
would print something like r is a *taus’ generator.

unsigned long int gsl.rng_max (const gsl_rng * r) Random
gsl_rng_max returns the largest value that gsl_rng_get can return.

unsigned long int gsl rng min (const gsl_rng * r) Random
gsl_rng_min returns the smallest value that gsl_rng_get can return. Usually this
value is zero. There are some generators with algorithms that cannot return zero,
and for these generators the minimum value is 1.

void * gsl rng state (const gsl_rng * r) Random

size_t gsl rng size (const gsl_rng * r) Random
These function return a pointer to the state of generator r and its size. You can use
this information to access the state directly. For example, the following code will
write the state of a generator to a stream,
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void * state = gsl_rng_state (r);
size_t n = gsl_rng_size (r);
fwrite (state, n, 1, stream);

const gsl_rng_type ** gsl_rng types_setup (void) Random
This function returns a pointer to an array of all the available generator types, ter-
minated by a null pointer. The function should be called once at the start of the
program, if needed. The following code fragment shows how to iterate over the array
of generator types to print the names of the available algorithms,

const gsl_rng_type *xt, **t0;
t0 = gsl_rng_types_setup ();
printf ("Available generators:\n");

for (t = t0; *t != 0; t++)
{
printf ("%s\n", (*t)->name);

¥

17.6 Random number environment variables

The library allows you to choose a default generator and seed from the environment
variables GSL_RNG_TYPE and GSL_RNG_SEED and the function gsl_rng_env_setup. This
makes it easy try out different generators and seeds without having to recompile your
program.

const gsl_rng_type * gsl-rng env_setup (void) Function

This function reads the environment variables GSL_RNG_TYPE and GSL_RNG_SEED and
uses their values to set the corresponding library variables gsl_rng_default and
gsl_rng_default_seed. These global variables are defined as follows,

extern const gsl_rng_type *gsl_rng_default

extern unsigned long int gsl_rng default_seed
The environment variable GSL_RNG_TYPE should be the name of a generator, such
as taus or mt19937. The environment variable GSL_RNG_SEED should contain the
desired seed value. It is converted to an unsigned long int using the C library
function strtoul.
If you don’t specify a generator for GSL_RNG_TYPE then gsl_rng mt19937 is used as
the default. The initial value of gsl_rng_default_seed is zero.

Here is a short program which shows how to create a global generator using the environment
variables GSL_RNG_TYPE and GSL_RNG_SEED,

#include <stdio.h>
#include <gsl/gsl_rng.h>

gsl_rng * r; /* global generator */
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int
main (void)
{
const gsl_rng_type * T;

gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

printf ("generator type: %s\n", gsl_rng name (r));
printf ("seed = %u\n", gsl_rng default_seed);
printf ("first value = Ju\n", gsl_rng _get (r));
return O;
}
Running the program without any environment variables uses the initial defaults, an
mt 19937 generator with a seed of 0,
bash$ ./a.out
generator type: mt19937
seed = 0
first value = 2867219139
By setting the two variables on the command line we can change the default generator and
the seed,
bash$ GSL_RNG_TYPE="taus" GSL_RNG_SEED=123 ./a.out
GSL_RNG_TYPE=taus
GSL_RNG_SEED=123
generator type: taus
seed = 123
first value = 2720986350

17.7 Saving and restoring random number generator state

The above methods ignore the random number ‘state’ which changes from call to call.
It is often useful to be able to save and restore the state. To permit these practices, a few
somewhat more advanced functions are supplied. These include:

int gsl rng_memcpy (gsl_rng * dest, const gsl_rng * src) Random
This function copies the random number generator src into the pre-existing generator
dest, making dest into an exact copy of src. The two generators must be of the same

type.

gsl_rng * gsl rng _clone (const gsl_rng * r) Random
This function returns a pointer to a newly created generator which is an exact copy
of the generator r.

void gsl_rng print_state (const gsl_rng * r) Random
This function prints a hex-dump of the state of the generator r to stdout. At the
moment its only use is for debugging.
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17.8 Random number generator algorithms

The functions described above make no reference to the actual algorithm used. This is
deliberate so that you can switch algorithms without having to change any of your appli-
cation source code. The library provides a large number of generators of different types,
including simulation quality generators, generators provided for compatibility with other
libraries and historical generators from the past.

The following generators are recommended for use in simulation. They have extremely
long periods, low correlation and pass most statistical tests.

gsl_rng mt19937 Generator

The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a variant
of the twisted generalized feedback shift-register algorithm, and is known as the
"Mersenne Twister" generator. It has a Mersenne prime period of 21997 — 1 (about
105999) and is equi-distributed in 623 dimensions. It has passed the DIEHARD statisti-
cal tests. It uses 624 words of state per generator and is comparable in speed to the
other generators. The original generator used a default seed of 4357 and choosing s
equal to zero in gsl_rng_set reproduces this.

For more information see,

Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator". ACM
Transactions on Modeling and Computer Simulation, Vol. 8, No. 1 (Jan. 1998),
Pages 3-30

The generator gsl_rng_19937 uses the second revision of the seeding procedure pub-
lished by the two authors above in 2002. The original seeding procedures could cause
spurious artifacts for some seed values. They are still available through the alternate
generators gsl_rng mt19937_1999 and gsl_rng mt19937_1998.

gsl_rng _ranlxs0 Generator
gsl_rng _ranlxsl Generator
gsl_rng _ranlxs2 Generator

The generator ranlxsO is a second-generation version of the RANLUX algorithm of
Liischer, which produces "luxury random numbers". This generator provides sin-
gle precision output (24 bits) at three luxury levels ranlxs0, ranlxs1 and ranlxs2.
It uses double-precision floating point arithmetic internally and can be significantly
faster than the integer version of ranlux, particularly on 64-bit architectures. The
period of the generator is about 10'"!. The algorithm has mathematically proven
properties and can provide truly decorrelated numbers at a known level of random-
ness. The higher luxury levels provide additional decorrelation between samples as
an additional safety margin.

gsl_rng _ranlxdl Generator

gsl_rng _ranlxd2 Generator
These generators produce double precision output (48 bits) from the RANLXS gener-
ator. The library provides two luxury levels ranlxdl and ranlxd?2.
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gsl_rng _ranlux Generator

gsl_rng ranlux389 Generator
The ranlux generator is an implementation of the original algorithm developed by
Liischer. It uses a lagged-fibonacci-with-skipping algorithm to produce "luxury ran-
dom numbers". It is a 24-bit generator, originally designed for single-precision IEEE
floating point numbers. This implementation is based on integer arithmetic, while
the second-generation versions RANLXS and RANLXD described above provide floating-
point implementations which will be faster on many platforms. The period of the
generator is about 1017, The algorithm has mathematically proven properties and it
can provide truly decorrelated numbers at a known level of randomness. The default
level of decorrelation recommended by Liischer is provided by gsl_rng_ranlux, while
gsl_rng_ranlux389 gives the highest level of randomness, with all 24 bits decorre-
lated. Both types of generator use 24 words of state per generator.

For more information see,

M. Liischer, "A portable high-quality random number generator for lattice field
theory calculations", Computer Physics Communications, 79 (1994) 100-110.

F. James, "RANLUX: A Fortran implementation of the high-quality pseudo-
random number generator of Liischer", Computer Physics Communications, 79
(1994) 111-114

gsl_rng_cmrg Generator
This is a combined multiple recursive generator by L’Ecuyer. Its sequence is,
Zn = (n — yn) mod my
where the two underlying generators x,, and y,, are,
Ty = (@1Tp_1 + 2%, _o + azx,_3) modm,
Yn = (b1Yn—1 + b2Yn—2 + b3yn_3) mod my

with coefficients a; = 0, a; = 63308, a3 = —183326, b; = 86098, b, = 0, b3 = —539608,
and moduli m; = 23! — 1 = 2147483647 and m, = 2145483479.

The period of this generator is 225 (about 10%!). It uses 6 words of state per generator.
For more information see,

P. ’Ecuyer, "Combined Multiple Recursive Random Number Generators," Op-
erations Research, 44, 5 (1996), 816-822.

gsl_rng_mrg Generator
This is a fifth-order multiple recursive generator by L’Ecuyer, Blouin and Coutre. Its
sequence is,

Ty = (a1T,_1 + a5z, _5) modm
with a, = 107374182, ay = a3 = a4 = 0, a5 = 104480 and m = 23! — 1.
The period of this generator is about 10%6. It uses 5 words of state per generator.
More information can be found in the following paper,

P. L’Ecuyer, F. Blouin, and R. Coutre, "A search for good multiple recursive
random number generators", ACM Transactions on Modeling and Computer
Simulation 3, 87-98 (1993).
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gsl_rng_taus Generator

gsl_rng_taus2 Generator
This is a maximally equidistributed combined Tausworthe generator by L’Ecuyer.
The sequence is,

x, = (5, sp @ s,)
where,
shin = (((sh&4294967294) < 12) & (((s), < 13) @ s;) > 19))
521 = (((s2&4294967288) < 4) @ (((s2 < 2) @ s2) > 25))
s2 01 = (((s2&4294967280) < 17) @ (((s} < 3) @ s2) > 11))

computed modulo 232. In the formulas above @ denotes “exclusive-or”. Note that
the algorithm relies on the properties of 32-bit unsigned integers and has been imple-
mented using a bitmask of OXxFFFFFFFF to make it work on 64 bit machines.

The period of this generator is 2%® (about 10%¢). It uses 3 words of state per generator.
For more information see,

P. L’Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators",
Mathematics of Computation, 65, 213 (1996), 203-213.

The generator gsl_rng_taus2 uses the same algorithm as gsl_rng_taus but with
an improved seeding procedure described in the paper,

P. L’Ecuyer, "Tables of Maximally Equidistributed Combined LFSR Genera-
tors", Mathematics of Computation, 68, 225 (1999), 261-269

The generator gsl_rng_taus2 should now be used in preference to gsl_rng_taus.

gsl_rng_gfsr4 Generator
The gfsr4 generator is like a lagged-fibonacci generator, and produces each number
as an xor’d sum of four previous values.

Tn ="Tn-A ® T'n—B S T'n—cC @ Tn—D

Ziff (ref below) notes that "it is now widely known" that two-tap registers (such
as R250, which is described below) have serious flaws, the most obvious one being
the three-point correlation that comes from the definition of the generator. Nice
mathematical properties can be derived for GFSR’s, and numerics bears out the
claim that 4-tap GFSR’s with appropriately chosen offsets are as random as can be
measured, using the author’s test.

This implementation uses the values suggested the example on p392 of Ziff’s article:
A =471, B= 1586, C = 6988, D = 9689.

If the offsets are appropriately chosen (such the one ones in this implementation),
then the sequence is said to be maximal. I’'m not sure what that means, but I would
guess that means all states are part of the same cycle, which would mean that the
period for this generator is astronomical; it is (25)P ~ 10%333* where K = 32 is the
number of bits in the word, and D is the longest lag. This would also mean that any
one random number could easily be zero; ie 0 < r < 232,

Ziff doesn’t say so, but it seems to me that the bits are completely independent here,
so one could use this as an efficient bit generator; each number supplying 32 random
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bits. The quality of the generated bits depends on the underlying seeding procedure,
which may need to be improved in some circumstances.

For more information see,

Robert M. Ziff, "Four-tap shift-register-sequence random-number generators",
Computers in Physics, 12(4), Jul/Aug 1998, pp 385-392.

17.9 Unix random number generators

The standard Unix random number generators rand, random and rand48 are provided as
part of GSL. Although these generators are widely available individually often they aren’t
all available on the same platform. This makes it difficult to write portable code using them
and so we have included the complete set of Unix generators in GSL for convenience. Note
that these generators don’t produce high-quality randomness and aren’t suitable for work
requiring accurate statistics. However, if you won’t be measuring statistical quantities and
just want to introduce some variation into your program then these generators are quite
acceptable.

gsl_rng rand Generator
This is the BSD rand () generator. Its sequence is
Zpt1 = (az, + c) modm

with @ = 1103515245, ¢ = 12345 and m = 23!. The seed specifies the initial value,
x1. The period of this generator is 23!, and it uses 1 word of storage per generator.

gsl_rng random_bsd Generator
gsl_rng random_libch Generator
gsl_rng random_glibc2 Generator

These generators implement the random () family of functions, a set of linear feedback
shift register generators originally used in BSD Unix. There are several versions of
random() in use today: the original BSD version (e.g. on SunOS4), a libc5 version
(found on older GNU/Linux systems) and a glibc2 version. Each version uses a
different seeding procedure, and thus produces different sequences.

The original BSD routines accepted a variable length buffer for the generator state,
with longer buffers providing higher-quality randomness. The random() function
implemented algorithms for buffer lengths of 8, 32, 64, 128 and 256 bytes, and the
algorithm with the largest length that would fit into the user-supplied buffer was used.
To support these algorithms additional generators are available with the following
names,

gsl_rng_random8_bsd
gsl_rng_random32_bsd
gsl_rng_random64_bsd
gsl_rng_randoml128_bsd
gsl_rng_random256_bsd

where the numeric suffix indicates the buffer length. The original BSD random func-
tion used a 128-byte default buffer and so gsl_rng_random_bsd has been made equiv-
alent to gsl_rng_random128_bsd. Corresponding versions of the 1ibch and glibc2
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generators are also available, with the names gsl_rng_random8_libc5, gsl_rng_
random8_glibc2, etc.

gsl_rng rand48 Generator
This is the Unix rand48 generator. Its sequence is

i1 = (ax, + ¢) modm

defined on 48-bit unsigned integers with a = 25214903917, ¢ = 11 and m = 28, The
seed specifies the upper 32 bits of the initial value, x;, with the lower 16 bits set to
0x330E. The function gsl_rng_get returns the upper 32 bits from each term of the
sequence. This does not have a direct parallel in the original rand48 functions, but
forcing the result to type long int reproduces the output of mrand48. The function
gsl_rng_uniform uses the full 48 bits of internal state to return the double precision
number z,,/m, which is equivalent to the function drand48. Note that some versions
of the GNU C Library contained a bug in mrand48 function which caused it to produce
different results (only the lower 16-bits of the return value were set).

17.10 Numerical Recipes generators

The following generators are provided for compatibility with Numerical Recipes. Note
that the original Numerical Recipes functions used single precision while we use double
precision. This will lead to minor discrepancies, but only at the level of single-precision
rounding error. If necessary you can force the returned values to single precision by storing
them in a volatile float, which prevents the value being held in a register with double
or extended precision. Apart from this difference the underlying algorithms for the integer
part of the generators are the same.

gsl_rng _ran0 Generator
Numerical recipes ran0O implements Park and Miller’s MINSTD algorithm with a mod-
ified seeding procedure.

gsl_rng ranl Generator
Numerical recipes ranl implements Park and Miller’s MINSTD algorithm with a 32-
element Bayes-Durham shuffle box.

gsl_rng _ran2 Generator
Numerical recipes ran2 implements a L’Ecuyer combined recursive generator with a
32-element Bayes-Durham shuffle-box.

gsl_rng ran3 Generator
Numerical recipes ran3 implements Knuth’s portable subtractive generator.
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17.11 Other random number generators

The generators in this section are provided for compatibility with existing libraries. If
you are converting an existing program to use GSL then you can select these generators to
check your new implementation against the original one, using the same random number
generator. After verifying that your new program reproduces the original results you can
then switch to a higher-quality generator.

Note that most of the generators in this section are based on single linear congruence
relations, which are the least sophisticated type of generator. In particular, linear congru-
ences have poor properties when used with a non-prime modulus, as several of these routines
do (e.g. with a power of two modulus, 23! or 23?). This leads to periodicity in the least
significant bits of each number, with only the higher bits having any randomness. Thus if
you want to produce a random bitstream it is best to avoid using the least significant bits.

gsl_rng _ranf Generator
This is the CRAY random number generator RANF. Its sequence is

Zni1 = (azx,) modm

defined on 48-bit unsigned integers with a = 44485709377909 and m = 2*®. The seed
specifies the lower 32 bits of the initial value, x;, with the lowest bit set to prevent
the seed taking an even value. The upper 16 bits of x; are set to 0. A consequence
of this procedure is that the pairs of seeds 2 and 3, 4 and 5, etc produce the same
sequences.

The generator compatibile with the CRAY MATHLIB routine RANF. It produces
double precision floating point numbers which should be identical to those from the
original RANF.

There is a subtlety in the implementation of the seeding. The initial state is reversed
through one step, by multiplying by the modular inverse of @ mod m. This is done
for compatibility with the original CRAY implementation.

Note that you can only seed the generator with integers up to 232, while the original
CRAY implementation uses non-portable wide integers which can cover all 2*® states
of the generator.

The function gsl_rng_get returns the upper 32 bits from each term of the sequence.
The function gsl_rng_uniform uses the full 48 bits to return the double precision
number x,,/m.

The period of this generator is 246,

gsl_rng ranmar Generator
This is the RANMAR lagged-fibonacci generator of Marsaglia, Zaman and Tsang.
It is a 24-bit generator, originally designed for single-precision IEEE floating point
numbers. It was included in the CERNLIB high-energy physics library.

gsl_rng r250 Generator
This is the shift-register generator of Kirkpatrick and Stoll. The sequence is

Ty = Tp_103 D Tr_250
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where @ denote “exclusive-or”, defined on 32-bit words. The period of this generator
is about 22°° and it uses 250 words of state per generator.
For more information see,

S. Kirkpatrick and E. Stoll, "A very fast shift-register sequence random number
generator", Journal of Computational Physics, 40, 517-526 (1981)

gsl_rng_tt800 Generator
This is an earlier version of the twisted generalized feedback shift-register generator,
and has been superseded by the development of MT19937. However, it is still an
acceptable generator in its own right. It has a period of 28 and uses 33 words of
storage per generator.
For more information see,
Makoto Matsumoto and Yoshiharu Kurita, "Twisted GFSR Generators 11", ACM
Transactions on Modelling and Computer Simulation, Vol. 4, No. 3, 1994, pages
254-266.

gsl_rng_vax Generator
This is the VAX generator MTHSRANDOM. Its sequence is,

Ty = (ax, + ¢)modm

with @ = 69069, ¢ = 1 and m = 232. The seed specifies the initial value, z;. The
period of this generator is 23 and it uses 1 word of storage per generator.

gsl_rng_transputer Generator
This is the random number generator from the INMOS Transputer Development
system. Its sequence is,

Zpi1 = (azx,) modm

with a = 1664525 and m = 232. The seed specifies the initial value, x;.

gsl_rng randu Generator
This is the IBM RANDU generator. Its sequence is

Zny1 = (ax,) modm

with a = 65539 and m = 23!, The seed specifies the initial value, z;. The period of
this generator was only 22°. It has become a textbook example of a poor generator.

gsl_rng _minstd Generator
This is Park and Miller’s "minimal standard" MINSTD generator, a simple linear con-
gruence which takes care to avoid the major pitfalls of such algorithms. Its sequence
is,

Zni1 = (ax,) modm

with a = 16807 and m = 23! — 1 = 2147483647. The seed specifies the initial value,
x1. The period of this generator is about 23!.
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This generator is used in the IMSL Library (subroutine RNUN) and in MATLAB
(the RAND function). It is also sometimes known by the acronym "GGL" (I'm not
sure what that stands for).

For more information see,

Park and Miller, "Random Number Generators: Good ones are hard to find",
Communications of the ACM, October 1988, Volume 31, No 10, pages 1192-1201.

gsl_rng_uni Generator
gsl_rng_uni32 Generator
This is a reimplementation of the 16-bit SLATEC random number generator RUNIF.
A generalization of the generator to 32 bits is provided by gsl_rng_uni32. The
original source code is available from NETLIB.

gsl_rng_slatec Generator
This is the SLATEC random number generator RAND. It is ancient. The original
source code is available from NETLIB.

gsl_rng_zuf Generator
This is the ZUFALL lagged Fibonacci series generator of Peterson. Its sequence is,

U= Up—273 + Un—co7
u, =t — floor(t)
The original source code is available from NETLIB. For more information see,

W. Petersen, "Lagged Fibonacci Random Number Generators for the NEC SX-
3", International Journal of High Speed Computing (1994).

gsl_rng_borosh13 Generator
This is the Borosh, Niederreiter random number generator. It is taken from Knuth’s
Seminumerical Algorithms, 3rd Ed., pages 106-108. Its sequence is,

Tpy1 = (az,) modm

with a = 1812433253 and m = 232. The seed specifies the initial value, z;.

gsl_rng_coveyou Generator
This is the Coveyou random number generator. It is taken from Knuth’s Seminumer-
ical Algorithms, 3rd Ed., Section 3.2.2. Its sequence is,

ZTpi1 = (X (2, + 1)) modm

with m = 232. The seed specifies the initial value, z;.

gsl_rng_fishmanl8 Generator
This is the Fishman, Moore III random number generator. It is taken from Knuth’s
Seminumerical Algorithms, 3rd Ed., pages 106-108. Its sequence is,

Zpi1 = (azx,) modm

with @ = 62089911 and m = 23! — 1. The seed specifies the initial value, z;.
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gsl_rng_fishman20 Generator
This is the Fishman random number generator. It is taken from Knuth’s Seminumer-
ical Algorithms, 3rd Ed., page 108. Its sequence is,

Zpi1 = (azx,) modm
with a = 48271 and m = 23! — 1. The seed specifies the initial value, z;.
gsl_rng_fishman2x Generator

This is the L’Ecuyer - Fishman random number generator. It is taken from Knuth’s
Seminumerical Algorithms, 3rd Ed., page 108. Its sequence is,

Znt1 = (¢, — yn) modm
with m = 23! — 1. x,, and y,, are given by the fishman20 and lecuyer21 algorithms.

The seed specifies the initial value, x;.

gsl_rng_knuthran?2 Generator
This is a second-order multiple recursive generator described by Knuth in Seminu-
merical Algorithms, 3rd Ed., page 108. Its sequence is,

Ty = (@12, 1 + asx, o) modm
with a; = 271828183, ay = 314159269, and m = 23! — 1.
gsl_rng _knuthran Generator

This is a second-order multiple recursive generator described by Knuth in Seminu-
merical Algorithms, 3rd Ed., Section 3.6. Knuth provides its C code.

gsl_rng_lecuyer21 Generator
This is the L’Ecuyer random number generator. It is taken from Knuth’s Seminu-
merical Algorithms, 3rd Ed., page 106-108. Its sequence is,

Zpi1 = (ax,) modm
with a = 40692 and m = 23! — 249. The seed specifies the initial value, ;.
gsl_rng_watermanl4 Generator
This is the Waterman random number generator. It is taken from Knuth’s Seminu-
merical Algorithms, 3rd Ed., page 106-108. Its sequence is,
ZTni1 = (ax,) modm

with a = 1566083941 and m = 232. The seed specifies the initial value, x;.
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17.12 Random Number Generator Performance

The following table shows the relative performance of a selection the available random
number generators. The simulation quality generators which offer the best performance are
taus, gfsr4 and mt19937.

1754 k ints/sec, 870 k doubles/sec, taus
1613 k ints/sec, 855 k doubles/sec, gfsr4
1370 k ints/sec, 769 k doubles/sec, mt19937
565 k ints/sec, 571 k doubles/sec, ranlxsO
400 k ints/sec, 405 k doubles/sec, ranlxsl
490 k ints/sec, 389 k doubles/sec, mrg

407 k ints/sec, 297 k doubles/sec, ranlux
243 k ints/sec, 254 k doubles/sec, ranlxdi
251 k ints/sec, 253 k doubles/sec, ranlxs2
238 k ints/sec, 215 k doubles/sec, cmrg
247 k ints/sec, 198 k doubles/sec, ranlux389
141 k ints/sec, 140 k doubles/sec, ranlxd2
1852 k ints/sec, 935 k doubles/sec, ran3
813 k ints/sec, 575 k doubles/sec, ranO
787 k ints/sec, 476 k doubles/sec, ranl
379 k ints/sec, 292 k doubles/sec, ran2

17.13 Examples

The following program demonstrates the use of a random number generator to produce
uniform random numbers in range [0.0, 1.0),
#include <stdio.h>
#include <gsl/gsl_rng.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

int i, n = 10;
gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

for (i = 0; i < n; i++)
{
double u = gsl_rng uniform (r);
printf ("%.5f\n", u);
X
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gsl_rng_free (r);

return O;

}
Here is the output of the program,

./a.out
.66758
.36908
. 72483
.68776
.57365
.81078
.27108
.83777
.13736
.95745

O OO O OO OO O

o

The numbers depend on the seed used by the generator. The default seed can be changed
with the GSL_RNG_SEED environment variable to produce a different stream of numbers.
The generator itself can be changed using the environment variable GSL_RNG_TYPE. Here
is the output of the program using a seed value of 123 and the mutiple-recursive generator
nrg,

$ GSL_RNG_SEED=123 GSL_RNG_TYPE=mrg ./a.out
GSL_RNG_TYPE=mrg
GSL_RNG_SEED=123
.33050

.86631

.32982

.67620

.53391

.06457

.16847

.70229

.04371

.86374

ol eoNeoNoNeoNeoNeoNoNoNe]

17.14 References and Further Reading

The subject of random number generation and testing is reviewed extensively in Knuth’s
Seminumerical Algorithms.

Donald E. Knuth, The Art of Computer Programming: Seminumerical Algorithms (Vol
2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842.

Further information is available in the review paper written by Pierre L’Ecuyer,

P. L’Ecuyer, “Random Number Generation”, Chapter 4 of the Handbook on Simula-
tion, Jerry Banks Ed., Wiley, 1998, 93-137.

http://www.iro.umontreal.ca/"lecuyer/papers.html in the file ‘handsim.ps’.
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On the World Wide Web, see the pLab home page (http://random.mat.sbg.ac.at/) for
a lot of information on the state-of-the-art in random number generation, and for numerous
links to various "random" WWW sites.

The source code for the DIEHARD random number generator tests is also available online.
DIEHARD source code G. Marsaglia,
http://stat.fsu.edu/pub/diehard/

17.15 Acknowledgements

Thanks to Makoto Matsumoto, Takuji Nishimura and Yoshiharu Kurita for making the
source code to their generators (MT19937, MM&TN; TT800, MM&YK) available under
the GNU General Public License. Thanks to Martin Liischer for providing notes and source
code for the RANLXS and RANLXD generators.



Chapter 18: Quasi-Random Sequences 189

18 Quasi-Random Sequences

This chapter describes functions for generating quasi-random sequences in arbitrary
dimensions. A quasi-random sequence progressively covers a d-dimensional space with a
set of points that are uniformly distributed. Quasi-random sequences are also known as
low-discrepancy sequences. The quasi-random sequence generators use an interface that is
similar to the interface for random number generators.

The functions described in this section are declared in the header file ‘gsl_qrng.h’.

18.1 Quasi-random number generator initialization

gsl_qgrng * gsl_qrng_alloc (const gsl_qrng_type * T, unsigned int Function
d)
This function returns a pointer to a newly-created instance of a quasi-random sequence
generator of type T and dimension d. If there is insufficient memory to create the
generator then the function returns a null pointer and the error handler is invoked
with an error code of GSL_ENOMEM.

void gsl_qrng_free (gsl_qrng * q) Function
This function frees all the memory associated with the generator q.

void gsl_qrng_init (gsl_qrng * q) Function
This function reinitializes the generator q to its starting point.

18.2 Sampling from a quasi-random number generator

int gsl_qrng _get (const gsl_qrng * q, double x][]) Function
This function returns the next point x from the sequence generator q. The space
available for x must match the dimension of the generator. The point x will lie in the
range 0 < x; < 1 for each z;.

18.3 Auxiliary quasi-random number generator functions

const char * gsl_ qrng name (const gsl_qrng * q) Function
This function returns a pointer to the name of the generator.

size_t gsl_qrng_size (const gsl_qrng * q) Function
void * gsl_qrng_state (const gsl_qrng * q) Function
These function return a pointer to the state of generator r and its size. You can use
this information to access the state directly. For example, the following code will
write the state of a generator to a stream,
void * state = gsl_qrng_state (q);
size_t n = gsl_qrng_size (q);
fwrite (state, n, 1, stream);
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18.4 Saving and resorting quasi-random number generator
state

int gsl_qrng memcpy (gsl_qrng * dest, const gsl_qrng * src) Function
This function copies the quasi-random sequence generator src into the pre-existing
generator dest, making dest into an exact copy of src. The two generators must be
of the same type.

gsl_qrng * gsl_qrng _clone (const gsl_qgrng * q) Function
This function returns a pointer to a newly created generator which is an exact copy
of the generator r.

18.5 Quasi-random number generator algorithms

The following quasi-random sequence algorithms are available,

gsl_qrng_niederreiter_2 Generator
This generator uses the algorithm described in Bratley, Fox, Niederreiter, ACM Trans.
Model. Comp. Sim. 2, 195 (1992). It is valid up to 12 dimensions.

gsl_qrng_sobol Generator
This generator uses the Sobol sequence described in Antonov, Saleev, USSR Comput.
Maths. Math. Phys. 19, 252 (1980). It is valid up to 40 dimensions.

18.6 Examples

The following program prints the first 1024 points of the 2-dimensional Sobol sequence.

#include <stdio.h>
#include <gsl/gsl_qrng.h>

int
main (void)
{

int 1i;

gsl_qrng * q = gsl_qrng_alloc (gsl_qrng_sobol, 2);

for (i = 0; i < 1024; i++)
{
double v[2];
gsl_grng_get(q, v);
printf ("%.5f %.5f\n", v[0], v[1]);
}

gsl_qrng_free(q);
return O;

¥

Here is the output from the program,
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$ ./a.out

0.50000 0.50000
0.75000 0.25000
0.25000 0.75000
0.37500 0.37500
0.87500 0.87500
0.62500 0.12500
0.12500 0.62500

191

It can be seen that successive points progressively fill-in the spaces between previous points.
The following plot shows the distribution in the x-y plane of the first 1024 points from the
Sobol sequence,

09 fr 4t * +++++ A s
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Distribution of the first 1024 points
from the quasi-random Sobol sequence

18.7 References

The implementations of the quasi-random sequence routines are based on the algorithms
described in the following paper,

P. Bratley and B.L. Fox and H. Niederreiter, “Algorithm 738: Programs to Generate
Niederreiter’s Low-discrepancy Sequences”, Transactions on Mathematical Software,
Vol. 20, No. 4, December, 1994, p. 494-495.



Chapter 19: Random Number Distributions 192

19 Random Number Distributions

This chapter describes functions for generating random variates and computing their
probability distributions. Samples from the distributions described in this chapter can be
obtained using any of the random number generators in the library as an underlying source
of randomness. In the simplest cases a non-uniform distribution can be obtained analytically
from the uniform distribution of a random number generator by applying an appropriate
transformation. This method uses one call to the random number generator.

More complicated distributions are created by the acceptance-rejection method, which
compares the desired distribution against a distribution which is similar and known analyt-
ically. This usually requires several samples from the generator.

The functions described in this section are declared in ‘gsl_randist.h’.
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19.1 The Gaussian Distribution

double gsl ran_gaussian (const gsl_rng * r, double sigma) Random
This function returns a Gaussian random variate, with mean zero and standard de-
viation sigma. The probability distribution for Gaussian random variates is,

exp(—2°/20%)dx

1
p(z)dx 5os
for  in the range —oco to +o00. Use the transformation z = p + x on the numbers
returned by gsl_ran_gaussian to obtain a Gaussian distribution with mean p. This
function uses the Box-Mueller algorithm which requires two calls the random number
generator r.

double gsl ran_gaussian_pdf (double x, double sigma) Function
This function computes the probability density p(x) at x for a Gaussian distribution
with standard deviation sigma, using the formula given above.

Gaussian Distribution
0.5

Q Q
[l
DO =

0.4

0.3

0.2

0.1

double gsl ran_gaussian_ratio_method (const gsl_rng * r, const Function
double sigma)
This function computes a gaussian random variate using the Kinderman-Monahan
ratio method.

double gsl ran_ugaussian (const gsl_rng * r) Random
double gsl ran_ugaussian_pdf (double x) Function
double gsl ran_ugaussian_ratio_method (const gsl_rng * r) Random

These functions compute results for the unit Gaussian distribution. They are equiv-
alent to the functions above with a standard deviation of one, sigma = 1.
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19.2 The Gaussian Tail Distribution

double gsl ran_gaussian_tail (const gsl_rng * r, double a, double Random
sigma)
This function provides random variates from the upper tail of a Gaussian distribution
with standard deviation sigma. The values returned are larger than the lower limit
a, which must be positive. The method is based on Marsaglia’s famous rectangle-
wedge-tail algorithm (Ann Math Stat 32, 894-899 (1961)), with this aspect explained
in Knuth, v2, 3rd ed, p139,586 (exercise 11).

The probability distribution for Gaussian tail random variates is,

1 2 /0 2
—x°/2
N{aio) exp(—z*/20°)dx

for x > a where N(a;0) is the normalization constant,

77)

p(z)dz =

1
N(a;o) = ierfc (

double gsl ran_gaussian_tail_pdf (double x, double a, double Function
sigma)
This function computes the probability density p(z) at x for a Gaussian tail dis-
tribution with standard deviation sigma and lower limit a, using the formula given

above.
Gaussian Tail Distribution
0.2
c=1,a=1.5
= 01
Y
0
0 1 2 3 4 5
x
double gsl ran_ugaussian_tail (const gsl_rng * r, double a) Random
double gsl ran_ugaussian_tail_pdf (double x, double a) Function

These functions compute results for the tail of a unit Gaussian distribution. They
are equivalent to the functions above with a standard deviation of one, sigma = 1.
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19.3 The Bivariate Gaussian Distribution

void gsl_ran_bivariate_gaussian (const gsl_rng * r, double Random
sigma_x, double sigma_y, double rho, double * x, double * y)
This function generates a pair of correlated gaussian variates, with mean zero, cor-
relation coefficient rho and standard deviations sigma_x and sigma_y in the x and y
directions. The probability distribution for bivariate gaussian random variates is,

—(2* +y* — 2pzy)
dxdy = dxd
p(z, y)drdy 2no,0,/1 — p? P ( 20202(1 - p?) vy

for z,y in the range —oo to +00. The correlation coefficient rho should lie between 1
and —1.

double gsl ran_bivariate_gaussian_pdf (double x, double y, Function
double sigma_x, double sigma.y, double rho)
This function computes the probability density p(x,y) at (x,y) for a bivariate gaussian
distribution with standard deviations sigma_x, sigma_y and correlation coefficient rho,
using the formula given above.

Bivariate Gaussian Distribution

o,=1,0,=1,p=0.9
2
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19.4 The Exponential Distribution

double gsl ran_exponential (const gsl_rng * r, double mu) Random
This function returns a random variate from the exponential distribution with mean
mu. The distribution is,

pla)de =+ exp(—a/p)da

for x > 0.

double gsl ran_exponential_pdf (double x, double mu) Function
This function computes the probability density p(x) at x for an exponential distribu-
tion with mean mu, using the formula given above.

Exponential Distribution

1
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19.5 The Laplace Distribution

double gsl ran_laplace (const gsl_rng * r, double a) Random
This function returns a random variate from the Laplace distribution with width a.
The distribution is,
1
pla)ds = o exp(~|z/al)da
a
for —oco < x < 0.

double gsl ran_laplace_pdf (double x, double a) Function

This function computes the probability density p(x) at x for a Laplace distribution
with mean a, using the formula given above.

Laplace Distribution (Two-sided Exponential)
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19.6 The Exponential Power Distribution

double gsl ran_exppow (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the exponential power distribution with
scale parameter a and exponent b. The distribution is,

p(z)dr = exp(—|z/a|")dz

1
2al'(1+1/b)
for x > 0. For b = 1 this reduces to the Laplace distribution. For b = 2 it has the
same form as a gaussian distribution, but with a = v/20.

double gsl ran_exppow_pdf (double x, double a, double b) Function
This function computes the probability density p(z) at x for an exponential power
distribution with scale parameter a and exponent b, using the formula given above.

Exponential Power Distribution
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19.7 The Cauchy Distribution

double gsl ran_cauchy (const gsl_rng * r, double a) Random
This function returns a random variate from the Cauchy distribution with scale pa-
rameter a. The probability distribution for Cauchy random variates is,
1
————dx
ar(1+ (z/a)?)
for = in the range —oo to +00. The Cauchy distribution is also known as the Lorentz
distribution.

p(z)ds =

double gsl ran_cauchy_pdf (double x, double a) Function
This function computes the probability density p(z) at x for a Cauchy distribution
with scale parameter a, using the formula given above.

Cauchy Distribution
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19.8 The Rayleigh Distribution

double gsl ran_rayleigh (const gsl_rng * r, double sigma) Random
This function returns a random variate from the Rayleigh distribution with scale
parameter sigma. The distribution is,

p(z)dr = % exp(—2?/(20%))dx
g
for x > 0.
double gsl ran_rayleigh_pdf (double x, double sigma) Function

This function computes the probability density p(z) at x for a Rayleigh distribution
with scale parameter sigma, using the formula given above.

Rayleigh Distribution
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19.9 The Rayleigh Tail Distribution

double gsl ran_rayleigh_tail (const gsl_rng * r, double a double Random
sigma)
This function returns a random variate from the tail of the Rayleigh distribution with
scale parameter sigma and a lower limit of a. The distribution is,

p(a)de = = exp((a® — 2%)/(20%))dx
g
for x > a.
double gsl ran_rayleigh_tail pdf (double x, double a, double Function
sigma)

This function computes the probability density p(x) at x for a Rayleigh tail distribu-
tion with scale parameter sigma and lower limit a, using the formula given above.

Rayleigh Tail Distribution
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19.10 The Landau Distribution

double gsl ran_landau (const gsl_rng * r) Random
This function returns a random variate from the Landau distribution. The proba-
bility distribution for Landau random variates is defined analytically by the complex
integral,
1 c+ioco
T) = — ds exp(slog(s) + xs

pla) = 5= [ ds exp(slog(s) +s)
For numerical purposes it is more convenient to use the following equivalent form of
the integral,

p(z) = (1/7) /Ooo dt exp(—tlog(t) — xt) sin(mt).

double gsl ran_landau_pdf (double x) Function
This function computes the probability density p(x) at x for the Landau distribution
using an approximation to the formula given above.

Landau Distribution
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19.11 The Levy alpha-Stable Distributions

double gsl ran_levy (const gsl_rng * r, double ¢, double alpha) Random
This function returns a random variate from the Levy symmetric stable distribution
with scale ¢ and exponent alpha. The symmetric stable probability distribution is
defined by a fourier transform,

1 fre
p(x) = —/ dt exp(—itx — |ct|*)
21 J_ o

There is no explicit solution for the form of p(x) and the library does not define
a corresponding pdf function. For a = 1 the distribution reduces to the Cauchy
distribution. For a = 2 it is a Gaussian distribution with ¢ = v/2¢. For o < 1 the
tails of the distribution become extremely wide.

The algorithm only works for 0 < o < 2.

Levy Distribution
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19.12 The Levy skew alpha-Stable Distribution

double gsl ran_levy_skew (const gsl_rng * r, double ¢, double Random
alpha, double beta)
This function returns a random variate from the Levy skew stable distribution with
scale ¢, exponent alpha and skewness parameter beta. The skewness parameter must
lie in the range [—1,1]. The Levy skew stable probability distribution is defined by a
fourier transform,

p(x) = % /:O dt exp(—itz — |ct|*(1 — ifBsign(t) tan(wra/2)))

When « = 1 the term tan(wa/2) is replaced by —(2/7)log|t|. There is no explicit
solution for the form of p(x) and the library does not define a corresponding pdf
function. For o = 2 the distribution reduces to a Gaussian distribution with o = v/2¢
and the skewness parameter has no effect. For a < 1 the tails of the distribution
become extremely wide. The symmetric distribution corresponds to 3 = 0.

The algorithm only works for 0 < a < 2.

The Levy alpha-stable distributions have the property that if IV alpha-stable variates
are drawn from the distribution p(c, «r, 3) then the sum Y = X; + X5 + ... + Xy will also
be distributed as an alpha-stable variate, p(N'/“c, o, 3).

Levy Skew Distribution
c=1,a=1.0,8=1.0
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19.13 The Gamma Distribution

double gsl ran_gamma (const gsl_rng * r, double a, double b) Random

This function returns a random variate from the gamma distribution. The distribution
function is,

1
p(.’B)d{E = W"Ba_le_w/bd.ﬁ
for x > 0.
double gsl ran_gamma_pdf (double x, double a, double b) Function

This function computes the probability density p(z) at x for a gamma distribution
with parameters a and b, using the formula given above.

Gamma Distribution
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19.14 The Flat (Uniform) Distribution

double gsl ran_flat (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the flat (uniform) distribution from a to
b. The distribution is,
1

(b—a)dx

p(x)ds =
if a <z < b and 0 otherwise.
double gsl ran_flat_pdf (double x, double a, double b) Function

This function computes the probability density p(x) at x for a uniform distribution
from a to b, using the formula given above.

Flat Distribution
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19.15 The Lognormal Distribution

double gsl ran_lognormal (const gsl_rng * r, double zeta, double Random
sigma)
This function returns a random variate from the lognormal distribution. The distri-
bution function is,

pl(z)dz = N;Tf exp(—(In(z) — ¢)%/20%)dx

for x > 0.

double gsl ran_lognormal _pdf (double x, double zeta, double Function
sigma)
This function computes the probability density p(x) at x for a lognormal distribution
with parameters zeta and sigma, using the formula given above.

Lognormal Distribution
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19.16 The Chi-squared Distribution

The chi-squared distribution arises in statistics If Y; are n independent gaussian random
variates with unit variance then the sum-of-squares,

X;=> Y

has a chi-squared distribution with n degrees of freedom.

double gsl ran_chisq (const gsl_rng * r, double nu) Random
This function returns a random variate from the chi-squared distribution with nu
degrees of freedom. The distribution function is,
1

p(x)dx = T0/2) (z/2)"* exp(—z/2)dx

for x > 0.

double gsl ran_chisq_pdf (double x, double nu) Function
This function computes the probability density p(x) at x for a chi-squared distribution
with nu degrees of freedom, using the formula given above.

Chi-squared Distribution
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19.17 The F-distribution

The F-distribution arises in statistics. If Y; and Y, are chi-squared deviates with v; and
v, degrees of freedom then the ratio,

o Wi/
(Y2/v2)
has an F-distribution F(x; vy, vs).
double gsl ran_fdist (const gsl_rng * r, double nul, double nu?2) Random

This function returns a random variate from the F-distribution with degrees of free-
dom nul and nu2. The distribution function is,

I'((1n +12)/2) /2 a2 _ o
dr = vy 2] vi/2—1 vi/2—v2/2
p(x)dx (1 /2T (2)2) v vyt e (v2 +112)
for x > 0.
double gsl ran_fdist_pdf (double x, double nul, double nu2) Function

This function computes the probability density p(x) at x for an F-distribution with
nul and nu2 degrees of freedom, using the formula given above.

F-Distribution
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19.18 The t-distribution

The t-distribution arises in statistics. If Y; has a normal distribution and Y, has a
chi-squared distribution with v degrees of freedom then the ratio,

Y

VYalv

has a t-distribution t(x;v) with v degrees of freedom.

X:

double gsl ran_tdist (const gsl_rng * r, double nu) Random
This function returns a random variate from the t-distribution. The distribution
function is,

I((v+1)/2)
NeAO)

p(z)dr = (1 + 22 /v)~ D2y

for —oo <z < 4o00.
double gsl ran_tdist_pdf (double x, double nu) Function

This function computes the probability density p(z) at x for a t-distribution with nu
degrees of freedom, using the formula given above.

Student’s t distribution
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19.19 The Beta Distribution

double gsl ran_beta (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the beta distribution. The distribution
function is,

Lla+b) , b—1
= T a1y
p(x)dx F(a)F(b)x (1—2)"""dx
for 0 <z <1.
double gsl ran_beta_pdf (double x, double a, double b) Function

This function computes the probability density p(z) at x for a beta distribution with
parameters a and b, using the formula given above.

Beta Distribution
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19.20 The Logistic Distribution

double gsl ran_logistic (const gsl_rng * r, double a) Random

This function returns a random variate from the logistic distribution. The distribution
function is,

_ exp(—z/a)
p(z)dr = a(l + exp(—z/a))

de

for —oco < x < +o00.

double gsl ran_logistic_pdf (double x, double a) Function
This function computes the probability density p(z) at x for a logistic distribution
with scale parameter a, using the formula given above.

Logistic Distribution
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19.21 The Pareto Distribution

double gsl ran_pareto (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the Pareto distribution of order a. The
distribution function is,

p(z)d = (a/b)/(z/b)" " dx
for x > b.

double gsl ran_pareto_pdf (double x, double a, double b) Function
This function computes the probability density p(z) at x for a Pareto distribution
with exponent a and scale b, using the formula given above.

Pareto Distribution
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19.22 The Spherical Distribution (2D & 3D)

The spherical distributions generate random vectors, located on a spherical surface.
They can be used as random directions, for example in the steps of a random walk.

void gsl ran_dir_2d (const gsl_rng * r, double *x, double *y) Random
void gsl_ran_dir_2d_trig_method (const gsl_rng * r, double *x, Random
double *y)

This function returns a random direction vector v = (x,y) in two dimensions. The
vector is normalized such that |v|*> = 2® + y*> = 1. The obvious way to do this is to
take a uniform random number between 0 and 27 and let x and y be the sine and
cosine respectively. Two trig functions would have been expensive in the old days,
but with modern hardware implementations, this is sometimes the fastest way to go.
This is the case for my home Pentium (but not the case for my Sun Sparcstation 20
at work). Once can avoid the trig evaluations by choosing x and y in the interior of
a unit circle (choose them at random from the interior of the enclosing square, and
then reject those that are outside the unit circle), and then dividing by /2% + 2. A
much cleverer approach, attributed to von Neumann (See Knuth, v2, 3rd ed, p140,
exercise 23), requires neither trig nor a square root. In this approach, u and v are
chosen at random from the interior of a unit circle, and then z = (u? — v?)/(u® 4+ v?)
and y = uv/(u? + v?).

void gsl ran_dir_3d (const gsl_rng * r, double *x, double *y, Random
double * z)
This function returns a random direction vector v = (x,y,z) in three dimensions. The
vector is normalized such that |v|? = 22 +y?+ 2% = 1. The method employed is due to
Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2, 3rd ed, p136.
It uses the surprising fact that the distribution projected along any axis is actually
uniform (this is only true for 3d).

void gsl ran_dir_nd (const gsl_rng * r, size_t n, double *x) Random
This function returns a random direction vector v = (x1, xa, ..., x,) in n dimensions.
The vector is normalized such that [v[* = 2 + 23 + --- + 22 = 1. The method

uses the fact that a multivariate gaussian distribution is spherically symmetric. Each
component is generated to have a gaussian distribution, and then the components are
normalized. The method is described by Knuth, v2, 3rd ed, p135-136, and attributed
to G. W. Brown, Modern Mathematics for the Engineer (1956).
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19.23 The Weibull Distribution

double gsl ran_weibull (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the Weibull distribution. The distribu-
tion function is,

p(z)dr = %wbil exp(—(z/a)’)dz

for x > 0.

double gsl ran_weibull_pdf (double x, double a, double b) Function
This function computes the probability density p(x) at x for a Weibull distribution
with scale a and exponent b, using the formula given above.

Weibull Distribution
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19.24 The Type-1 Gumbel Distribution

double gsl ran_gumbell (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the Type-1 Gumbel distribution. The
Type-1 Gumbel distribution function is,

p(z)dx = abexp(—(bexp(—az) + az))dx

for —0 < x < .

double gsl ran_gumbell_pdf (double x, double a, double b) Function
This function computes the probability density p(x) at x for a Type-1 Gumbel dis-
tribution with parameters a and b, using the formula given above.

Type 1 Gumbel Distribution

0.7
Typel,a=1,b=1

0.6

0.5

04
s

=03

0.2

0.1

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2



Chapter 19: Random Number Distributions 217

19.25 The Type-2 Gumbel Distribution

double gsl ran_gumbel2 (const gsl_rng * r, double a, double b) Random
This function returns a random variate from the Type-2 Gumbel distribution. The
Type-2 Gumbel distribution function is,

p(z)dr = absz™ "' exp(—bx~*)dx
for 0 < o < o0.

double gsl ran_gumbel2_pdf (double x, double a, double b) Function
This function computes the probability density p(x) at x for a Type-2 Gumbel dis-
tribution with parameters a and b, using the formula given above.

Type 2 Gumbel Distribution
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19.26 The Dirichlet Distribution

void gsl_ran_dirichlet (const gsl_rng * r, const size_t K, const Random
double alpha[|, double thetal])
This function returns an array of K random variates from a Dirichlet distribution of
order K-1. The distribution function is
1 K K
_ a;—1
p(By,...,0K)db; - dbx = Eil;[lei 5(1— ;ei)del o dfg
for 6; > 0 and «; > 0. The normalization factor Z is
_ Hf(:l ['(av)
F(Zfil ;)
The random variates are generated by sampling K values from gamma distributions

with parameters a = «;, b = 1, and renormalizing. See A.M. Law, W.D. Kelton,
Simulation Modeling and Analysis (1991).

double gsl ran_dirichlet_pdf (const size_t K, const double Function
alphal], const double thetal])
This function computes the probability density p(6,,...,0k) at theta]K] for a Dirich-
let distribution with parameters alpha[K], using the formula given above.

double gsl ran_dirichlet_Inpdf (const size_t K, const double Function
alpha[], const double thetal|)
This function computes the logarithm of the probability density p(6,,...,0x) for a
Dirichlet distribution with parameters alpha[K].
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19.27 General Discrete Distributions

Given K discrete events with different probabilities P[k], produce a random value k
consistent with its probability.

The obvious way to do this is to preprocess the probability list by generating a cumulative
probability array with K + 1 elements:

0] = 0
Clk + 1] = C[k] + P[k].

Note that this construction produces C[K] = 1. Now choose a uniform deviate u between
0 and 1, and find the value of k such that C[k] < u < C[k + 1]. Although this in principle
requires of order log K steps per random number generation, they are fast steps, and if you
use something like |uK | as a starting point, you can often do pretty well.

But faster methods have been devised. Again, the idea is to preprocess the probability
list, and save the result in some form of lookup table; then the individual calls for a random
discrete event can go rapidly. An approach invented by G. Marsaglia (Generating discrete
random numbers in a computer, Comm ACM 6, 37-38 (1963)) is very clever, and readers
interested in examples of good algorithm design are directed to this short and well-written
paper. Unfortunately, for large K, Marsaglia’s lookup table can be quite large.

A much better approach is due to Alastair J. Walker (An efficient method for generating
discrete random variables with general distributions, ACM Trans on Mathematical Software
3, 253-256 (1977); see also Knuth, v2, 3rd ed, p120-121,139). This requires two lookup
tables, one floating point and one integer, but both only of size K. After preprocessing,
the random numbers are generated in O(1) time, even for large K. The preprocessing
suggested by Walker requires O(K?) effort, but that is not actually necessary, and the
implementation provided here only takes O(K) effort. In general, more preprocessing leads
to faster generation of the individual random numbers, but a diminishing return is reached
pretty early. Knuth points out that the optimal preprocessing is combinatorially difficult
for large K.

This method can be used to speed up some of the discrete random number generators be-
low, such as the binomial distribution. To use if for something like the Poisson Distribution,
a modification would have to be made, since it only takes a finite set of K outcomes.

gsl_ran_discrete_t * gsl ran_discrete_preproc (size_t K, Function
const double * P)

This function returns a pointer to a structure that contains the lookup table for the
discrete random number generator. The array P[] contains the probabilities of the
discrete events; these array elements must all be positive, but they needn’t add up to
one (so you can think of them more generally as "weights") — the preprocessor will
normalize appropriately. This return value is used as an argument for the gsl_ran_
discrete function below.

size_t gsl ran_discrete (const gsl_rng * r, const Random
gsl_ran_discrete_t * g)
After the preprocessor, above, has been called, you use this function to get the discrete
random numbers.
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double gsl ran_discrete_pdf (size_t k, const gsl_ran_discrete_t Function
*g)
Returns the probability P[k] of observing the variable k. Since P[k] is not stored as
part of the lookup table, it must be recomputed; this computation takes O(K), so if
K is large and you care about the original array P[k] used to create the lookup table,
then you should just keep this original array P[k| around.

void gsl ran_discrete_free (gsl_ran_discrete_t * g) Function
De-allocates the lookup table pointed to by g.
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19.28 The Poisson Distribution

unsigned int gsl ran_poisson (const gsl_rng * r, double mu) Random
This function returns a random integer from the Poisson distribution with mean mu.
The probability distribution for Poisson variates is,

1

p(k) = o exp(—p)
for kK > 0.

double gsl ran_poisson_pdf (unsigned int k, double mu) Function
This function computes the probability p(k) of obtaining k from a Poisson distribution
with mean mu, using the formula given above.

Poisson Distribution
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19.29 The Bernoulli Distribution

unsigned int gsl ran_bernoulli (const gsl_rng * r, double p) Random
This function returns either 0 or 1, the result of a Bernoulli trial with probability p.
The probability distribution for a Bernoulli trial is,

p(0)=1-p
p(l) =p
double gsl ran_bernoulli_pdf (unsigned int k, double p) Function

This function computes the probability p(k) of obtaining k from a Bernoulli distribu-
tion with probability parameter p, using the formula given above.
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19.30 The Binomial Distribution

unsigned int gsl ran_binomial (const gsl_rng * r, double p, Random
unsigned int n)
This function returns a random integer from the binomial distribution, the number
of successes in n independent trials with probability p. The probability distribution
for binomial variates is,

n!

k) = k 1— n—k
p(k) Hin—i)? (1-p)
for 0 <k <n.
double gsl ran_binomial pdf (unsigned int k, double p, unsigned Function
int n)

This function computes the probability p(k) of obtaining k from a binomial distribu-
tion with parameters p and n, using the formula given above.

Binomial Distribution
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19.31 The Multinomial Distribution

void gsl_ran_multinomial (const gsl_rng * r, const size_t K, Random
const unsigned int N, const double p[], unsigned int n])
This function returns an array of K random variates from a multinomial distribution.
The distribution function is,
N!

—pnlpn2 .. .an
nK' 1 2 K

P<n17n27"'7nK> == n ‘TL ]
1Mol

where (ny, na, ..., mg) are nonnegative integers with Zszl ny = N, and
(p1,p2,--.,PK) is a probability distribution with Y p; = 1. If the array p[K] is not
normalized then its entries will be treated as weights and normalized appropriately.

Random variates are generated using the conditional binomial method (see C.S.
David, The computer generation of multinomial random variates, Comp. Stat. Data

Anal. 16 (1993) 205-217 for details).

double gsl ran_multinomial pdf (const size_t K, const double Function
p|[], const unsigned int n[])
This function computes the probability P(ny,na,...,nk) of sampling n[K] from a

multinomial distribution with parameters p[K], using the formula given above.

double gsl ran_multinomial Inpdf (const size_t K, const Function
double p[], const unsigned int nl])
This function returns the logarithm of the probability for the multinomial distribution
P(ny,na,...,nx) with parameters p[K].
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19.32 The Negative Binomial Distribution

unsigned int gsl ran_negative_binomial (const gsl_rng * r, Random
double p, double n)
This function returns a random integer from the negative binomial distribution, the
number of failures occurring before n successes in independent trials with probability
p of success. The probability distribution for negative binomial variates is,
'n+k) i
p(k) = m]) (1-p)

Note that n is not required to be an integer.

double gsl ran_negative_binomial pdf (unsigned int k, double Function
p, double n)
This function computes the probability p(k) of obtaining k from a negative binomial
distribution with parameters p and n, using the formula given above.

Negative Binomial Distribution
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19.33 The Pascal Distribution

unsigned int gsl ran_pascal (const gsl_rng * r, double p, Random
unsigned int k)
This function returns a random integer from the Pascal distribution. The Pascal
distribution is simply a negative binomial distribution with an integer value of n.

(n+k—1)!

k)= ~——2p"(1—p)
p(k) W —1) 7 (1-p)
for k>0
double gsl ran_pascal_pdf (unsigned int k, double p, unsigned Function
int n)

This function computes the probability p(k) of obtaining k from a Pascal distribution
with parameters p and n, using the formula given above.

Pascal Distribution
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19.34 The Geometric Distribution

unsigned int gsl ran_geometric (const gsl_rng * r, double p) Random
This function returns a random integer from the geometric distribution, the num-
ber of independent trials with probability p until the first success. The probability
distribution for geometric variates is,

p(k) =p(1—p)*!
for k£ > 1.

double gsl ran_geometric_pdf (unsigned int k, double p) Function

This function computes the probability p(k) of obtaining k from a geometric distri-
bution with probability parameter p, using the formula given above.
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19.35 The Hypergeometric Distribution

unsigned int gsl ran_hypergeometric (const gsl_rng * r, Random
unsigned int nl, unsigned int n2, unsigned int t)
This function returns a random integer from the hypergeometric distribution. The
probability distribution for hypergeometric random variates is,

p(k) = C(ny, k)C(na,t — k)/C(ny + na, k)
where C(a,b) = a!/(bl(a — b)!). The domain of k is max(0t — ny), ..., max(t,nq).
double gsl ran_hypergeometric_pdf (unsigned int k, unsigned Function
int nl, unsigned int n2, unsigned int t)

This function computes the probability p(k) of obtaining k from a hypergeometric
distribution with parameters nl, n2, n3, using the formula given above.

Hypergeometric Distribution
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19.36 The Logarithmic Distribution

unsigned int gsl ran_logarithmic (const gsl_rng * r, double p) Random
This function returns a random integer from the logarithmic distribution. The prob-
ability distribution for logarithmic random variates is,

-1 pk
P = Mz(l—p)<k‘>
for k > 1.

double gsl ran_logarithmic_pdf (unsigned int k, double p) Function
This function computes the probability p(k) of obtaining k from a logarithmic distri-
bution with probability parameter p, using the formula given above.

Logarithmic Distribution
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19.37 Shuffling and Sampling

The following functions allow the shuffling and sampling of a set of objects. The al-
gorithms rely on a random number generator as source of randomness and a poor quality
generator can lead to correlations in the output. In particular it is important to avoid
generators with a short period. For more information see Knuth, v2, 3rd ed, Section 3.4.2,
“Random Sampling and Shuffling”.

void gsl_ran_shuffle (const gsl_rng * r, void * base, size_t n, Random
size_t size)
This function randomly shuffles the order of n objects, each of size size, stored in the
array base[0..n-1]. The output of the random number generator r is used to produce
the permutation. The algorithm generates all possible n! permutations with equal
probability, assuming a perfect source of random numbers.

The following code shows how to shuffle the numbers from 0 to 51,
int a[52];

for (i = 0; i < B2; i++)
{
ali] = i;

}

gsl_ran_shuffle (r, a, 52, sizeof (int));

int gsl ran_choose (const gsl_rng * r, void * dest, size_t k, void Random
* src, size_t n, size_t size)
This function fills the array dest[k] with k objects taken randomly from the n elements
of the array src[0..n-1]. The objects are each of size size. The output of the random
number generator r is used to make the selection. The algorithm ensures all possible
samples are equally likely, assuming a perfect source of randomness.

The objects are sampled without replacement, thus each object can only appear once
in dest[k]. It is required that k be less than or equal to n. The objects in dest will be
in the same relative order as those in src. You will need to call gsl_ran_shuffle(r,
dest, n, size) if you want to randomize the order.

The following code shows how to select a random sample of three unique numbers
from the set 0 to 99,

double a[3], b[100];

for (i = 0; i < 100; i++)
{
b[i] = (double) 1i;
}

gsl_ran_choose (r, a, 3, b, 100, sizeof (double));
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void gsl_ran_sample (const gsl_rng * r, void * dest, size_t k, Random
void * src, size_t n, size_t size)
This function is like gs1l_ran_choose but samples k items from the original array of
n items src with replacement, so the same object can appear more than once in the
output sequence dest. There is no requirement that k be less than n in this case.

19.38 Examples

The following program demonstrates the use of a random number generator to produce
variates from a distribution. It prints 10 samples from the Poisson distribution with a mean
of 3.

#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

int i, n = 10;
double mu = 3.0;

/* create a generator chosen by the
environment variable GSL_RNG_TYPE x/

gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

/* print n random variates chosen from
the poisson distribution with mean
parameter mu */

for (i = 0; i < n; i++)
{
unsigned int k = gsl_ran_poisson (r, mu);
printf (" %u", k);
}

printf("\n");
return O;

}

If the library and header files are installed under ‘/usr/local’ (the default location) then
the program can be compiled with these options,

gcc demo.c -1gsl -lgslcblas -1m
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Here is the output of the program,

$ ./a.out
4233134135

The variates depend on the seed used by the generator. The seed for the default generator
type gsl_rng_default can be changed with the GSL_RNG_SEED environment variable to
produce a different stream of variates,

$ GSL_RNG_SEED=123 ./a.out
GSL_RNG_SEED=123
1121262187

The following program generates a random walk in two dimensions.

#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int
main (void)
{

int 1i;

double x = 0, y = 0, dx, dy;

const gsl_rng_type * T;
gsl_rng * r;

gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc (T);

printf("%g %g\n", x, y);

for (i = 0; i < 10; i++)
{
gsl_ran dir_2d (r, &dx, &dy);
x += dx; y += dy;
printf ("%g %g\n", x, y);
}

return O;

Example output from the program, three 10-step random walks from the origin.
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Random walk

-7-6-5-4-3-2-101234567
k

19.39 References and Further Reading

For an encyclopaedic coverage of the subject readers are advised to consult the book Non-
Uniform Random Variate Generation by Luc Devroye. It covers every imaginable distribu-
tion and provides hundreds of algorithms.
Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, ISBN 0-387-
96305-7.

The subject of random variate generation is also reviewed by Knuth, who describes algo-
rithms for all the major distributions.
Donald E. Knuth, The Art of Computer Programming: Seminumerical Algorithms (Vol
2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842.
The Particle Data Group provides a short review of techniques for generating distributions
of random numbers in the “Monte Carlo” section of its Annual Review of Particle Physics.
Review of Particle Properties R.M. Barnett et al., Physical Review D54, 1 (1996)
http://pdg.1bl.gov/.

The Review of Particle Physics is available online in postscript and pdf format.



Chapter 20: Statistics 234

20 Statistics

This chapter describes the statistical functions in the library. The basic statistical func-
tions include routines to compute the mean, variance and standard deviation. More ad-
vanced functions allow you to calculate absolute deviations, skewness, and kurtosis as well
as the median and arbitrary percentiles. The algorithms use recurrence relations to compute
average quantities in a stable way, without large intermediate values that might overflow.

The functions are available in versions for datasets in the standard floating-point
and integer types. The versions for double precision floating-point data have the prefix
gsl_stats and are declared in the header file ‘gsl_statistics_double.h’. The versions
for integer data have the prefix gsl_stats_int and are declared in the header files
‘gsl_statistics_int.h’.

20.1 Mean, Standard Deviation and Variance

double gsl stats_mean (const double datal], size_t stride, size_t Statistics

n)
This function returns the arithmetic mean of data, a dataset of length n with stride
stride. The arithmetic mean, or sample mean, is denoted by i and defined as,

.1
= —_— -732'
=22
where x; are the elements of the dataset data. For samples drawn from a gaussian
distribution the variance of ji is ?/N.

double gsl _stats_variance (const double datal|, size_t stride, Statistics

size_t n)
This function returns the estimated, or sample, variance of data, a dataset of length
n with stride stride. The estimated variance is denoted by 6% and is defined by,

A2 1 2
TP

where x; are the elements of the dataset data. Note that the normalization factor of
1/(N —1) results from the derivation of 62 as an unbiased estimator of the population
variance o2. For samples drawn from a gaussian distribution the variance of 62 itself
is 20%/N.

This function computes the mean via a call to gsl_stats_mean. If you have already
computed the mean then you can pass it directly to gsl_stats_variance_m.

double gsl stats_variance_m (const double data[|, size_t stride, Statistics

size_t n, double mean)
This function returns the sample variance of data relative to the given value of mean.
The function is computed with i replaced by the value of mean that you supply,

o1 2
6° = =) Z(azz — mean)
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double gsl stats_sd (const double data[], size_t stride, size_t n) Statistics
double gsl_stats_sd_m (const double data[], size_t stride, size_t Statistics
n, double mean)
The standard deviation is defined as the square root of the variance. These functions
return the square root of the corresponding variance functions above.

double gsl_stats_variance_with_fixed_mean (const double Statistics
datal], size_t stride, size_t n, double mean)
This function computes an unbiased estimate of the variance of data when the pop-
ulation mean mean of the underlying distribution is known a priori. In this case the
estimator for the variance uses the factor 1/N and the sample mean [i is replaced by
the known population mean p,

~2

6° = %Z(% —p)?

double gsl stats_sd_with_fixed_mean (const double datal], Statistics
size_t stride, size_t n, double mean)
This function calculates the standard deviation of data for a fixed population mean
mean. The result is the square root of the corresponding variance function.

20.2 Absolute deviation

double gsl_stats_absdev (const double data[], size_t stride, Statistics
size_t n)
This function computes the absolute deviation from the mean of data, a dataset of
length n with stride stride. The absolute deviation from the mean is defined as,

1
absdev = N Z |z; — i

where x; are the elements of the dataset data. The absolute deviation from the mean
provides a more robust measure of the width of a distribution than the variance. This
function computes the mean of data via a call to gsl_stats_mean.

double gsl _stats_absdev_m (const double data[], size_t stride, Statistics
size_t n, double mean)
This function computes the absolute deviation of the dataset data relative to the
given value of mean,

1
absdev = — T; — mean
v 2! |
This function is useful if you have already computed the mean of data (and want to
avoid recomputing it), or wish to calculate the absolute deviation relative to another
value (such as zero, or the median).
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20.3 Higher moments (skewness and kurtosis)

double gsl_stats_skew (const double data[|, size_t stride, size_t Statistics

n)
This function computes the skewness of data, a dataset of length n with stride stride.
The skewness is defined as,

1 T — fi °
skew—NZ< 5 )

where x; are the elements of the dataset data. The skewness measures the asymmetry
of the tails of a distribution.

The function computes the mean and estimated standard deviation of data via calls
to gsl_stats_mean and gsl_stats_sd.

double gsl_stats_skew_m_sd (const double data[], size_t stride, Statistics
size_t n, double mean, double sd)
This function computes the skewness of the dataset data using the given values of the
mean mean and standard deviation sd,

1 x; — mean\ >
kew — — Ti — mean
skew NZ( o )

These functions are useful if you have already computed the mean and standard
deviation of data and want to avoid recomputing them.

double gsl_stats_kurtosis (const double datal], size_t stride, Statistics
size_t n)
This function computes the kurtosis of data, a dataset of length n with stride stride.
The kurtosis is defined as,

1 T; — fi 4
kurtosis = —E -
urtosts (N ( p >> 3

The kurtosis measures how sharply peaked a distribution is, relative to its width. The
kurtosis is normalized to zero for a gaussian distribution.

double gsl_stats_kurtosis_m_sd (const double data[], size_t Statistics
stride, size_t n, double mean, double sd)
This function computes the kurtosis of the dataset data using the given values of the
mean mean and standard deviation sd,

1 x; — mean 4
kurtosis = — - —3
urtosis N(Z( d >>

This function is useful if you have already computed the mean and standard deviation
of data and want to avoid recomputing them.
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20.4 Autocorrelation

double gsl _stats_lagl_autocorrelation (const double datal], Function
const size_t stride, const size_t n)
This function computes the lag-1 autocorrelation of the dataset data.
i (@i — ) (wioy — 1)
i (i — ) (@i — )

a; =

double gsl_stats_lagl_autocorrelation_m (const double datal], Function
const size_t stride, const size_t n, const double mean)
This function computes the lag-1 autocorrelation of the dataset data using the given
value of the mean mean.

20.5 Covariance

double gsl _stats_covariance (const double datal[], const size_t Function
stridel, const double data2[], const size_t stride2, const size_t n)
This function computes the covariance of the datasets datal and data2 which must
both be of the same length n.
1 n
covar = —— Y (x; —2)(y: — 9)
(n—1) ;

double gsl _stats_covariance_m (const double datal[|, const Function
size_t stridel, const double data2[], const size_t n, const double
meanl, const double mean2)
This function computes the covariance of the datasets datal and data2 using the
given values of the means, meanl and mean2.

20.6 Weighted Samples

The functions described in this section allow the computation of statistics for weighted
samples. The functions accept an array of samples, x;, with associated weights, w;. Each
sample x; is considered as having been drawn from a Gaussian distribution with variance
o?. The sample weight w; is defined as the reciprocal of this variance, w; = 1/0?. Setting
a weight to zero corresponds to removing a sample from a dataset.

double gsl_stats_wmean (const double w[|, size_t wstride, const Statistics
double data[], size_t stride, size_t n)
This function returns the weighted mean of the dataset data with stride stride and
length n, using the set of weights w with stride wstride and length n. The weighted
mean is defined as,

~ > WiT;
o > w;
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double gsl stats_wvariance (const double w[|, size_t wstride, Statistics
const double data[|, size_t stride, size_t n)
This function returns the estimated variance of the dataset data with stride stride and
length n, using the set of weights w with stride wstride and length n. The estimated
variance of a weighted dataset is defined as,
9 dow; ~AN\2
7 S ) &
Note that this expression reduces to an unweighted variance with the familiar 1/(N —
1) factor when there are N equal non-zero weights.

double gsl_stats_wvariance_m (const double w[|, size_t wstride, Statistics
const double data[], size_t stride, size_t n, double wmean)
This function returns the estimated variance of the weighted dataset data using the
given weighted mean wmean.

double gsl_stats_wsd (const double w[|, size_t wstride, const Statistics
double data[], size_t stride, size_t n)
The standard deviation is defined as the square root of the variance. This function
returns the square root of the corresponding variance function gsl_stats_wvariance
above.

double gsl_stats_wsd_m (const double w[], size_t wstride, const Statistics
double data[], size_t stride, size_t n, double wmean)
This function returns the square root of the corresponding variance function gsl_
stats_wvariance_m above.

double gsl_stats_wvariance_with_fixed_mean (const double Statistics
wl[], size_t wstride, const double data[|], size_t stride, size_t n, const
double mean)
This function computes an unbiased estimate of the variance of weighted dataset data
when the population mean mean of the underlying distribution is known a priori. In
this case the estimator for the variance replaces the sample mean 4 by the known
population mean u,

o 2w - )’
7= > w;

double gsl_stats_wsd_with_fixed_mean (const double w][|, Statistics
size_t wstride, const double data[], size_t stride, size_t n, const
double mean)
The standard deviation is defined as the square root of the variance. This function
returns the square root of the corresponding variance function above.

double gsl stats_wabsdev (const double w[], size_t wstride, Statistics
const double datal], size_t stride, size_t n)
This function computes the weighted absolute deviation from the weighted mean of
data. The absolute deviation from the mean is defined as,
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absdev — 2= 0il% = 1
2w
double gsl stats_wabsdev_m (const double w[|, size_t wstride, Statistics

const double datal], size_t stride, size_t n, double wmean)
This function computes the absolute deviation of the weighted dataset data about
the given weighted mean wmean.

double gsl_stats_wskew (const double w[|, size_t wstride, const Statistics
double data[], size_t stride, size_t n)
This function computes the weighted skewness of the dataset data.

S wi((x; — xbar)/o)?
> w;

skew =

double gsl _stats_wskew_m_sd (const double w[|, size_t wstride, Statistics
const double data[], size_t stride, size_t n, double wmean, double wsd)
This function computes the weighted skewness of the dataset data using the given
values of the weighted mean and weighted standard deviation, wmean and wsd.

double gsl stats_wkurtosis (const double w[|, size_t wstride, Statistics
const double data[], size_t stride, size_t n)
This function computes the weighted kurtosis of the dataset data.

S w;((xz; — wbar)/sigma)*

-3
> w;

kurtosis =

double gsl_stats_wkurtosis_.m_sd (const double w[|, size_t Statistics
wstride, const double data[], size_t stride, size_t n, double wmean,
double wsd)
This function computes the weighted kurtosis of the dataset data using the given
values of the weighted mean and weighted standard deviation, wmean and wsd.

20.7 Maximum and Minimum values

double gsl_stats_max (const double data[|, size_t stride, size_t Statistics
n)
This function returns the maximum value in data, a dataset of length n with stride
stride. The maximum value is defined as the value of the element x; which satisfies
x; > x; for all j.
If you want instead to find the element with the largest absolute magnitude you will
need to apply fabs or abs to your data before calling this function.
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double gsl stats_min (const double data[], size_t stride, size_t n) Statistics

This function returns the minimum value in data, a dataset of length n with stride
stride. The minimum value is defined as the value of the element x; which satisfies
x; < x; for all j.

If you want instead to find the element with the smallest absolute magnitude you will
need to apply fabs or abs to your data before calling this function.

void gsl_stats_minmax (double * min, double * max, const Statistics
double data[], size_t stride, size_t n)
This function finds both the minimum and maximum values min, max in data in a
single pass.

size_t gsl _stats_max_index (const double data[], size_t stride, Statistics
size_t n)
This function returns the index of the maximum value in data, a dataset of length
n with stride stride. The maximum value is defined as the value of the element z;
which satisfies x; > x; for all . When there are several equal maximum elements

then the first one is chosen.

size_t gsl_stats_min_index (const double data[], size_t stride, Statistics
size_t n)
This function returns the index of the minimum value in data, a dataset of length n
with stride stride. The minimum value is defined as the value of the element z; which
satisfies x; > x; for all j. When there are several equal minimum elements then the
first one is chosen.

void gsl_stats_minmax_index (size_t * min_index, size_t * Statistics
max_index, const double datal|, size_t stride, size_t n)
This function returns the indexes min_index, max_index of the minimum and maxi-
mum values in data in a single pass.

20.8 Median and Percentiles

The median and percentile functions described in this section operate on sorted data.
For convenience we use quantiles, measured on a scale of 0 to 1, instead of percentiles (which
use a scale of 0 to 100).

double gsl stats_median_from_sorted_data (const double Statistics
sorted_data[|, size_t stride, size_t n)
This function returns the median value of sorted_data, a dataset of length n with
stride stride. The elements of the array must be in ascending numerical order. There
are no checks to see whether the data are sorted, so the function gsl_sort should
always be used first.

When the dataset has an odd number of elements the median is the value of element
(n—1)/2. When the dataset has an even number of elements the median is the mean
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double gsl stats_quantile_from_sorted_data (const double

of the two nearest middle values, elements (n —1)/2 and n/2. Since the algorithm for
computing the median involves interpolation this function always returns a floating-
point number, even for integer data types.

sorted_data[|, size_t stride, size_t n, double f)
This function returns a quantile value of sorted_data, a double-precision array of
length n with stride stride. The elements of the array must be in ascending numerical
order. The quantile is determined by the f, a fraction between 0 and 1. For example,
to compute the value of the 75th percentile f should have the value 0.75.

There are no checks to see whether the data are sorted, so the function gsl_sort
should always be used first.

The quantile is found by interpolation, using the formula

quantile = (1 — §)z; + 0x; 41
where ¢ is floor((n —1)f) and 0 is (n — 1) f —i.
Thus the minimum value of the array (data[0O*stride]) is given by f equal to zero,
the maximum value (data[(n-1)*stride]) is given by f equal to one and the median
value is given by f equal to 0.5. Since the algorithm for computing quantiles involves

interpolation this function always returns a floating-point number, even for integer
data types.

20.9 Example statistical programs

Here is a basic example of how to use the statistical functions:

#include <stdio.h>
#include <gsl/gsl_statistics.h>

int

main(void)

{
double datal[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
double mean, variance, largest, smallest;

mean = gsl_stats_mean(data, 1, 5);
variance = gsl_stats_variance(data, 1, 5);
largest gsl_stats_max(data, 1, 5);
smallest = gsl_stats_min(data, 1, 5);

printf ("The dataset is %g, %g, %8, hg, %hg\n",
data[0], datall]l, datal[2], datal3], datal4]);

printf ("The sample mean is %g\n", mean);

printf ("The estimated variance is %g\n", variance);
printf ("The largest value is %g\n", largest);
printf ("The smallest value is %g\n", smallest);
return O;

Statistics
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}

The program should produce the following output,

The dataset is 17.2, 18.1, 16.5, 18.3, 12.6
The sample mean is 16.54

The estimated variance is 4.2984

The largest value is 18.3

The smallest value is 12.6

Here is an example using sorted data,
#include <stdio.h>

#include <gsl/gsl_sort.h>
#include <gsl/gsl_statistics.h>

int
main(void)

{

¥

double datal[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
double median, upperq, lowerq;

printf ("Original dataset: %g, %g, %g, g, hg\n",
datal[0], datal[1], datal[2], datal3], datal4]);

gsl_sort (data, 1, 5);

printf ("Sorted dataset: %g, %g, %g, hg, hg\n",
datal[0], datall], datal[2], datal[3], datal4]);

median
= gsl_stats_median_from_sorted_data (data,
1, 5);
upperq
= gsl_stats_quantile_from_sorted_data (data,
1, 5,
0.75);
lowerq
= gsl_stats_quantile_from_sorted_data (data,
1, 5,
0.25);

printf ("The median is %g\n", median);

printf ("The upper quartile is %g\n", upperq);
printf ("The lower quartile is %g\n", lowerq);
return O;

This program should produce the following output,
Original dataset: 17.2, 18.1, 16.5, 18.3, 12.6

Sorted dataset: 12.6, 16.5, 17.2, 18.1, 18.3
The median is 17.2

242
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The upper quartile is 18.1
The lower quartile is 16.5

20.10 References and Further Reading

The standard reference for almost any topic in statistics is the multi-volume Advanced
Theory of Statistics by Kendall and Stuart.
Maurice Kendall, Alan Stuart, and J. Keith Ord. The Advanced Theory of Statistics
(multiple volumes) reprinted as Kendall’s Advanced Theory of Statistics. Wiley, ISBN
047023380X.

Many statistical concepts can be more easily understood by a Bayesian approach. The
following book by Gelman, Carlin, Stern and Rubin gives a comprehensive coverage of the
subject.
Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. Bayesian Data
Analysis. Chapman & Hall, ISBN 0412039915.

For physicists the Particle Data Group provides useful reviews of Probability and Statistics
in the "Mathematical Tools" section of its Annual Review of Particle Physics.

Review of Particle Properties R.M. Barnett et al., Physical Review D54, 1 (1996)
The Review of Particle Physics is available online at http://pdg.1bl.gov/.
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21 Histograms

This chapter describes functions for creating histograms. Histograms provide a conve-
nient way of summarizing the distribution of a set of data. A histogram consists of a set of
bins which count the number of events falling into a given range of a continuous variable
x. In GSL the bins of a histogram contain floating-point numbers, so they can be used
to record both integer and non-integer distributions. The bins can use arbitrary sets of
ranges (uniformly spaced bins are the default). Both one and two-dimensional histograms
are supported.

Once a histogram has been created it can also be converted into a probability distri-
bution function. The library provides efficient routines for selecting random samples from
probability distributions. This can be useful for generating simulations based real data.

The functions are declared in the header files ‘gsl_histogram.h’ and
‘gsl_histogram2d.h’.

21.1 The histogram struct

A histogram is defined by the following struct,

gsl_histogram Data Type
size_t n This is the number of histogram bins

double * range
The ranges of the bins are stored in an array of n+1 elements pointed to
by range.

double * bin
The counts for each bin are stored in an array of n elements pointed to
by bin. The bins are floating-point numbers, so you can increment them
by non-integer values if necessary.

The range for binfi] is given by rangeli] to range[i+1]. For n bins there are n + 1 entries
in the array range. Each bin is inclusive at the lower end and exclusive at the upper end.
Mathematically this means that the bins are defined by the following inequality,

bin[i] corresponds to range[i] < z < rangeli+1]
Here is a diagram of the correspondence between ranges and bins on the number-line for z,

[ bin[0] D[ bin[1] )[ binf[2] )[ bin[3] ) [ bin[5] )

In this picture the values of the range array are denoted by r. On the left-hand side of
each bin the square bracket "[" denotes an inclusive lower bound (r < z), and the round
parentheses ") " on the right-hand side denote an exclusive upper bound (x < r). Thus any
samples which fall on the upper end of the histogram are excluded. If you want to include
this value for the last bin you will need to add an extra bin to your histogram.

The gsl_histogram struct and its associated functions are defined in the header file
‘gsl_histogram.h’.
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21.2 Histogram allocation

The functions for allocating memory to a histogram follow the style of malloc and free.
In addition they also perform their own error checking. If there is insufficient memory
available to allocate a histogram then the functions call the error handler (with an error
number of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library
error handler to abort your program then it isn’t necessary to check every histogram alloc.

gsl_histogram * gsl_histogram_alloc (size_t n) Function
This function allocates memory for a histogram with n bins, and returns a pointer to a
newly created gs1l_histogram struct. If insufficient memory is available a null pointer
is returned and the error handler is invoked with an error code of GSL_ENOMEM. The
bins and ranges are not initialized, and should be prepared using one of the range-
setting functions below in order to make the histogram ready for use.

int gsl_histogram set_ranges (gsl_histogram * h, const double Function
rangel[], size_t size)
This function sets the ranges of the existing histogram h using the array range of
size size. The values of the histogram bins are reset to zero. The range array should
contain the desired bin limits. The ranges can be arbitrary, subject to the restriction
that they are monotonically increasing.

The following example shows how to create a histogram with logarithmic bins with
ranges [1,10), [10,100) and [100,1000).
gsl_histogram * h = gsl_histogram_alloc (3);

/* bin[0] covers the range 1 <= x < 10 */
/* bin[1] covers the range 10 <= x < 100 */
/* bin[2] covers the range 100 <= x < 1000 */

double range[4] = { 1.0, 10.0, 100.0, 1000.0 };

gsl_histogram_set_ranges (h, range, 4);

Note that the size of the range array should be defined to be one element bigger than
the number of bins. The additional element is required for the upper value of the
final bin.

int gsl histogram_set_ranges_uniform (gsl_histogram * h, Function
double xmin, double xmax)
This function sets the ranges of the existing histogram h to cover the range xmin to
xmax uniformly. The values of the histogram bins are reset to zero. The bin ranges
are shown in the table below,

bin[0]  corresponds to zmin < x < xmin +d
bin[l]  corresponds to  zmin +d < x < xmin + 2d

bin[n-1] corresponds to xmin + (n —1)d < x < xrmax

where d is the bin spacing, d = (xmaz — xmin)/n.
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void gsl_histogram free (gsl_histogram * h) Function
This function frees the histogram h and all of the memory associated with it.

21.3 Copying Histograms

int gsl histogram_memcpy (gsl_histogram * dest, const Function
gsl_histogram * src)
This function copies the histogram src into the pre-existing histogram dest, making
dest into an exact copy of src. The two histograms must be of the same size.

gsl_histogram * gsl_histogram_clone (const gsl_histogram * Function
src)
This function returns a pointer to a newly created histogram which is an exact copy
of the histogram src.

21.4 Updating and accessing histogram elements

There are two ways to access histogram bins, either by specifying an x coordinate or by
using the bin-index directly. The functions for accessing the histogram through x coordi-
nates use a binary search to identify the bin which covers the appropriate range.

int gsl histogram_increment (gsl_histogram * h, double x) Function
This function updates the histogram h by adding one (1.0) to the bin whose range
contains the coordinate x.

If x lies in the valid range of the histogram then the function returns zero to indicate
success. If x is less than the lower limit of the histogram then the function returns
GSL_EDOM, and none of bins are modified. Similarly, if the value of x is greater than
or equal to the upper limit of the histogram then the function returns GSL_EDOM, and
none of the bins are modified. The error handler is not called, however, since it is
often necessary to compute histogram for a small range of a larger dataset, ignoring
the values outside the range of interest.

int gsl_histogram_accumulate (gsl_histogram * h, double x, Function
double weight)
This function is similar to gsl_histogram_increment but increases the value of the
appropriate bin in the histogram h by the floating-point number weight.

double gsl_histogram_get (const gsl_histogram * h, size_t i) Function
This function returns the contents of the ith bin of the histogram h. If i lies outside
the valid range of indices for the histogram then the error handler is called with an
error code of GSL_EDOM and the function returns 0.

int gsl_histogram_get_range (const gsl_histogram * h, size_t i, Function
double * lower, double * upper)
This function finds the upper and lower range limits of the ith bin of the histogram
h. If the index i is valid then the corresponding range limits are stored in lower and
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upper. The lower limit is inclusive (i.e. events with this coordinate are included in the
bin) and the upper limit is exclusive (i.e. events with the coordinate of the upper limit
are excluded and fall in the neighboring higher bin, if it exists). The function returns
0 to indicate success. If i lies outside the valid range of indices for the histogram then
the error handler is called and the function returns an error code of GSL_EDOM.

double gsl_histogram_max (const gsl_histogram * h) Function
double gsl histogram _min (const gsl_histogram * h) Function
size_t gsl _histogram_bins (const gsl_histogram * h) Function

These functions return the maximum upper and minimum lower range limits and the
number of bins of the histogram h. They provide a way of determining these values
without accessing the gsl_histogram struct directly.

void gsl_histogram_ reset (gsl_histogram * h) Function
This function resets all the bins in the histogram h to zero.

21.5 Searching histogram ranges

The following functions are used by the access and update routines to locate the bin
which corresponds to a given x coordinate.

int gsl histogram find (const gsl_histogram * h, double x, Function
size_t * i)

This function finds and sets the index i to the bin number which covers the coordinate
x in the histogram h. The bin is located using a binary search. The search includes
an optimization for histograms with uniform range, and will return the correct bin
immediately in this case. If x is found in the range of the histogram then the function
sets the index i and returns GSL_SUCCESS. If x lies outside the valid range of the
histogram then the function returns GSL_EDOM and the error handler is invoked.

21.6 Histogram Statistics

double gsl histogram_max_val (const gsl_histogram * h) Function
This function returns the maximum value contained in the histogram bins.

size_t gsl _histogram_max_bin (const gsl_histogram * h) Function
This function returns the index of the bin containing the maximum value. In the case
where several bins contain the same maximum value the smallest index is returned.

double gsl histogram _min_val (const gsl_histogram * h) Function
This function returns the minimum value contained in the histogram bins.

size_t gsl_histogram _min_bin (const gsl_histogram * h) Function
This function returns the index of the bin containing the minimum value. In the case
where several bins contain the same maximum value the smallest index is returned.
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double gsl_histogram_mean (const gsl_histogram * h) Function
This function returns the mean of the histogrammed variable, where the histogram
is regarded as a probability distribution. Negative bin values are ignored for the
purposes of this calculation. The accuracy of the result is limited by the bin width.

double gsl histogram _sigma (const gsl_histogram * h) Function
This function returns the standard deviation of the histogrammed variable, where the
histogram is regarded as a probability distribution. Negative bin values are ignored
for the purposes of this calculation. The accuracy of the result is limited by the bin

width.

double gsl_histogram _sum (const gsl_histogram * h) Function
This function returns the sum of all bin values. Negative bin values are included in
the sum.

21.7 Histogram Operations

int gsl histogram_equal_bins_p (const gsl_histogram *hl, const Function
gsl_histogram *h2)
This function returns 1 if the all of the individual bin ranges of the two histograms
are identical, and 0 otherwise.

int gsl histogram_add (gsl_histogram *hl, const gsl_histogram Function
*h2)
This function adds the contents of the bins in histogram h2 to the corresponding bins
of histogram hl, i.e. h(i) = hy(i) + h2(¢). The two histograms must have identical
bin ranges.

int gsl histogram _sub (gsl_histogram *hl, const gsl_histogram Function
*h2)
This function subtracts the contents of the bins in histogram h2 from the correspond-
ing bins of histogram hl, i.e. h)(i) = hy(i) — ho(i). The two histograms must have
identical bin ranges.

int gsl_histogram _mul (gsl_histogram *hl, const gsl_histogram Function
*h2)
This function multiplies the contents of the bins of histogram hl by the contents of
the corresponding bins in histogram h2, i.e. b (i) = hy(i)*ho(i). The two histograms
must have identical bin ranges.

int gsl histogram_div (gsl_histogram *hl, const gsl_histogram Function
*h2)
This function divides the contents of the bins of histogram hl by the contents of the
corresponding bins in histogram h2, i.e. h[(i) = hy(i)/hs(i). The two histograms
must have identical bin ranges.
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int gsl histogram scale (gsl_histogram *h, double scale) Function

This function multiplies the contents of the bins of histogram h by the constant scale,
i.e. hi(i) = hi(i) * scale.

int gsl histogram shift (gsl_histogram *h, double offset) Function
This function shifts the contents of the bins of histogram h by the constant offset, i.e.

Ry (i) = hq(3) + offset.

21.8 Reading and writing histograms

The library provides functions for reading and writing histograms to a file as binary data
or formatted text.

int gsl histogram_ fwrite (FILE * stream, const gsl_histogram * Function
h)
This function writes the ranges and bins of the histogram h to the stream stream
in binary format. The return value is 0 for success and GSL_EFAILED if there was a
problem writing to the file. Since the data is written in the native binary format it
may not be portable between different architectures.

int gsl histogram fread (FILE * stream, gsl_histogram * h) Function
This function reads into the histogram h from the open stream stream in binary
format. The histogram h must be preallocated with the correct size since the function
uses the number of bins in h to determine how many bytes to read. The return value is
0 for success and GSL_EFAILED if there was a problem reading from the file. The data
is assumed to have been written in the native binary format on the same architecture.

int gsl_histogram fprintf (FILE * stream, const gsl_histogram * Function
h, const char * range_format, const char * bin_format)

This function writes the ranges and bins of the histogram h line-by-line to the stream
stream using the format specifiers range_format and bin_format. These should be one
of the %g, %e or %f formats for floating point numbers. The function returns 0 for
success and GSL_EFAILED if there was a problem writing to the file. The histogram
output is formatted in three columns, and the columns are separated by spaces, like
this,

range [0] range[1] bin[0]

range[1] range[2] bin[1]

range[2] range[3] bin[2]

fe.u.lée [n-1] range[n] bin[n-1]

The values of the ranges are formatted using range_format and the value of the bins
are formatted using bin_format. Each line contains the lower and upper limit of the
range of the bins and the value of the bin itself. Since the upper limit of one bin is
the lower limit of the next there is duplication of these values between lines but this
allows the histogram to be manipulated with line-oriented tools.
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int gsl histogram fscanf (FILE * stream, gsl_histogram * h) Function
This function reads formatted data from the stream stream into the histogram h. The
data is assumed to be in the three-column format used by gsl_histogram_fprintf.
The histogram h must be preallocated with the correct length since the function uses
the size of h to determine how many numbers to read. The function returns 0 for
success and GSL_EFAILED if there was a problem reading from the file.

21.9 Resampling from histograms

A histogram made by counting events can be regarded as a measurement of a probability
distribution. Allowing for statistical error, the height of each bin represents the probability
of an event where the value of z falls in the range of that bin. The probability distribution
function has the one-dimensional form p(z)dz where,

p(x) =n;/(Nw;)
In this equation n; is the number of events in the bin which contains x, w; is the width of
the bin and NV is the total number of events. The distribution of events within each bin is
assumed to be uniform.

21.10 The histogram probability distribution struct

The probability distribution function for a histogram consists of a set of bins which
measure the probability of an event falling into a given range of a continuous variable
x. A probability distribution function is defined by the following struct, which actually
stores the cumulative probability distribution function. This is the natural quantity for
generating samples via the inverse transform method, because there is a one-to-one mapping
between the cumulative probability distribution and the range [0,1]. It can be shown that
by taking a uniform random number in this range and finding its corresponding coordinate
in the cumulative probability distribution we obtain samples with the desired probability
distribution.

gsl_histogram_pdf Data Type
size_t n This is the number of bins used to approximate the probability distribu-
tion function.

double * range
The ranges of the bins are stored in an array of n+1 elements pointed to
by range.

double * sum
The cumulative probability for the bins is stored in an array of n elements
pointed to by sum.

The following functions allow you to create a gsl_histogram_pdf struct which represents
this probability distribution and generate random samples from it.

gsl_histogram_pdf * gsl histogram_pdf_alloc (size_t n) Function
This function allocates memory for a probability distribution with n bins and returns
a pointer to a newly initialized gsl_histogram_pdf struct. If insufficient memory
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is available a null pointer is returned and the error handler is invoked with an error
code of GSL_ENOMEM.

int gsl histogram_pdf_init (gsl_histogram_pdf * p, const Function
gsl_histogram * h)
This function initializes the probability distribution p with the contents of the his-
togram h. If any of the bins of h are negative then the error handler is invoked with
an error code of GSL_EDOM because a probability distribution cannot contain negative
values.

void gsl_histogram_pdf_free (gsl_histogram_pdf * p) Function
This function frees the probability distribution function p and all of the memory
associated with it.

double gsl_histogram_pdf sample (const gsl_histogram_pdf * p, Function
double r)
This function uses r, a uniform random number between zero and one, to compute
a single random sample from the probability distribution p. The algorithm used to
compute the sample s is given by the following formula,

s = rangeli] + ¢ * (range[i + 1] — range][i])

where 7 is the index which satisfies suml[i] < r < sum[i + 1] and delta is (r —
sumlt])/(sumli + 1] — sumli]).

21.11 Example programs for histograms

The following program shows how to make a simple histogram of a column of numerical
data supplied on stdin. The program takes three arguments, specifying the upper and
lower bounds of the histogram and the number of bins. It then reads numbers from stdin,
one line at a time, and adds them to the histogram. When there is no more data to read it
prints out the accumulated histogram using gsl_histogram_fprintf.

#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_histogram.h>

int
main (int argc, char **argv)
{

double a, b;

size_t n;

if (argc !'= 4)
{
printf ("Usage: gsl-histogram xmin xmax n\n"
"Computes a histogram of the data "
"on stdin using n bins from xmin "
"to xmax\n");
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exit (0);

a = atof (argv([1]);
b = atof (argv[2]);
atoi (argv[3]);

B
I

int status;
double x;

gsl_histogram * h = gsl_histogram_alloc (n);
gsl_histogram_set_uniform (h, a, b);
while (fscanf(stdin, "%lg", &x) == 1)

{

gsl_histogram_increment (h, x);

}
gsl_histogram_fprintf (stdout, h, "%g", "%g");

gsl_histogram_free (h);
}

exit (0);
}

Here is an example of the program in use. We generate 10000 random samples from a
Cauchy distribution with a width of 30 and histogram them over the range -100 to 100,
using 200 bins.

$ gsl-randist O 10000 cauchy 30
| gsl-histogram -100 100 200 > histogram.dat

A plot of the resulting histogram shows the familiar shape of the Cauchy distribution and
the fluctuations caused by the finite sample size.

$ awk ’{print $1, $3 ; print $2, $3}’ histogram.dat
| graph -T X



Chapter 21: Histograms 253

140 -

120

100

80

60

40

20

O P S R S R Tt I P T S R T S S
~100 ~50 0 50 100

21.12 Two dimensional histograms

A two dimensional histogram consists of a set of bins which count the number of events
falling in a given area of the (x,y) plane. The simplest way to use a two dimensional
histogram is to record two-dimensional position information, n(z,y). Another possibility is
to form a joint distribution by recording related variables. For example a detector might
record both the position of an event (z) and the amount of energy it deposited E. These
could be histogrammed as the joint distribution n(zx, F).

21.13 The 2D histogram struct

Two dimensional histograms are defined by the following struct,

gsl_histogram2d Data Type
size_t nx, ny
This is the number of histogram bins in the x and y directions.

double * xrange
The ranges of the bins in the x-direction are stored in an array of nx + 1
elements pointed to by xrange.

double * yrange
The ranges of the bins in the y-direction are stored in an array of ny + 1
pointed to by yrange.

double * bin
The counts for each bin are stored in an array pointed to by bin. The bins
are floating-point numbers, so you can increment them by non-integer
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values if necessary. The array bin stores the two dimensional array of
bins in a single block of memory according to the mapping bin(i,j) =
bin[i * ny + j].

The range for bin(i,j) is given by xrangel[i] to xrange[i+1] in the x-direction and
yrange [j] to yrange[j+1] in the y-direction. Each bin is inclusive at the lower end and
exclusive at the upper end. Mathematically this means that the bins are defined by the
following inequality,

bin(i,j) corresponds to xrange[i] < x < zrange[i + 1]

and yrangelj] <y < yrangelj + 1]

Note that any samples which fall on the upper sides of the histogram are excluded. If you
want to include these values for the side bins you will need to add an extra row or column
to your histogram.

The gsl_histogram2d struct and its associated functions are defined in the header file
‘gsl_histogram2d.h’.

21.14 2D Histogram allocation

The functions for allocating memory to a 2D histogram follow the style of malloc and
free. In addition they also perform their own error checking. If there is insufficient memory
available to allocate a histogram then the functions call the error handler (with an error
number of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library
error handler to abort your program then it isn’t necessary to check every 2D histogram
alloc.

gsl_histogram2d * gsl_histogram2d_alloc (size_t nx, size_t Function
ny)

This function allocates memory for a two-dimensional histogram with nx bins in the
x direction and ny bins in the y direction. The function returns a pointer to a newly
created gsl_histogram2d struct. If insufficient memory is available a null pointer is
returned and the error handler is invoked with an error code of GSL_ENOMEM. The bins
and ranges must be initialized with one of the functions below before the histogram
is ready for use.

int gsl histogram2d_set_ranges (gsl_histogram2d * h, const Function
double xrange||, size_t xsize, const double yrange[|, size_t ysize)
This function sets the ranges of the existing histogram h using the arrays xrange and
yrange of size xsize and ysize respectively. The values of the histogram bins are reset
to zero.

int gsl histogram2d_set_ranges_uniform (gsl_histogram2d * h, Function
double xmin, double xmax, double ymin, double ymax)
This function sets the ranges of the existing histogram h to cover the ranges xmin
to xmax and ymin to ymax uniformly. The values of the histogram bins are reset to
Z€ro.

void gsl_histogram2d_free (gsl_histogram2d * h) Function
This function frees the 2D histogram h and all of the memory associated with it.
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21.15 Copying 2D Histograms

int gsl histogram2d_memcpy (gsl_histogram2d * dest, const Function
gsl_histogram2d * src)
This function copies the histogram src into the pre-existing histogram dest, making
dest into an exact copy of src. The two histograms must be of the same size.

gsl_histogram2d * gsl _histogram2d_clone (const Function
gsl_histogram2d * src)
This function returns a pointer to a newly created histogram which is an exact copy
of the histogram src.

21.16 Updating and accessing 2D histogram elements

You can access the bins of a two-dimensional histogram either by specifying a pair of
(z,y) coordinates or by using the bin indices (i,j) directly. The functions for accessing
the histogram through (z,y) coordinates use binary searches in the x and y directions to
identify the bin which covers the appropriate range.

int gsl_histogram2d_increment (gsl_histogram2d * h, double X, Function
double y)
This function updates the histogram h by adding one (1.0) to the bin whose x and y
ranges contain the coordinates (x,y).

If the point (z,y) lies inside the valid ranges of the histogram then the function
returns zero to indicate success. If (z,y) lies outside the limits of the histogram then
the function returns GSL_EDOM, and none of bins are modified. The error handler is
not called, since it is often necessary to compute histogram for a small range of a
larger dataset, ignoring any coordinates outside the range of interest.

int gsl histogram2d_accumulate (gsl_histogram2d * h, double Function
x, double y, double weight)
This function is similar to gsl_histogram2d_increment but increases the value of
the appropriate bin in the histogram h by the floating-point number weight.

double gsl histogram2d_get (const gsl_histogram2d * h, size_t Function
i, size_t j)
This function returns the contents of the (i,j)th bin of the histogram h. If (ij) lies
outside the valid range of indices for the histogram then the error handler is called
with an error code of GSL_EDOM and the function returns 0.

int gsl histogram2d_get_xrange (const gsl_histogram2d * h, Function
size_t i, double * xlower, double * xupper)
int gsl_histogram2d_get_yrange (const gsl_histogram2d * h, Function

size_t j, double * ylower, double * yupper)
These functions find the upper and lower range limits of the ith and jth bins in the
x and y directions of the histogram h. The range limits are stored in xlower and
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xupper or ylower and yupper. The lower limits are inclusive (i.e. events with these
coordinates are included in the bin) and the upper limits are exclusive (i.e. events
with the value of the upper limit are not included and fall in the neighboring higher
bin, if it exists). The functions return 0 to indicate success. If i or j lies outside the
valid range of indices for the histogram then the error handler is called with an error
code of GSL_EDOM.

double gsl_histogram2d_xmax (const gsl_histogram2d * h) Function
double gsl_histogram2d_xmin (const gsl_histogram2d * h) Function
size_t gsl_histogram2d_nx (const gsl_histogram2d * h) Function
double gsl histogram2d_ymax (const gsl_histogram2d * h) Function
double gsl_histogram2d_ymin (const gsl_histogram2d * h) Function
size_t gsl_histogram2d_ny (const gsl_histogram2d * h) Function

These functions return the maximum upper and minimum lower range limits and the
number of bins for the x and y directions of the histogram h. They provide a way of
determining these values without accessing the gsl_histogram2d struct directly.

void gsl_histogram2d _reset (gsl_histogram2d * h) Function
This function resets all the bins of the histogram h to zero.

21.17 Searching 2D histogram ranges

The following functions are used by the access and update routines to locate the bin
which corresponds to a given (zy) coordinate.

int gsl histogram2d_find (const gsl_histogram2d * h, double x, Function
double y, size_t * i, size_t * j)

This function finds and sets the indices i and j to the to the bin which covers the
coordinates (x,y). The bin is located using a binary search. The search includes
an optimization for histogram with uniform ranges, and will return the correct bin
immediately in this case. If (z,y) is found then the function sets the indices (i,j) and
returns GSL_SUCCESS. If (z,y) lies outside the valid range of the histogram then the
function returns GSL_EDOM and the error handler is invoked.

21.18 2D Histogram Statistics

double gsl_histogram2d_max_val (const gsl_histogram2d * h) Function
This function returns the maximum value contained in the histogram bins.

void gsl_histogram2d_max_bin (const gsl_histogram2d * h, Function
size_t * i, size_t * j)
This function returns the indices (i,j) of the bin containing the maximum value in
the histogram h. In the case where several bins contain the same maximum value the
first bin found is returned.
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double gsl_histogram2d_min_val (const gsl_histogram2d * h) Function
This function returns the minimum value contained in the histogram bins.

void gsl_histogram2d_min_bin (const gsl_histogram2d * h, Function
size_t * i, size_t * j)
This function returns the indices (i,j) of the bin containing the minimum value in the
histogram h. In the case where several bins contain the same maximum value the
first bin found is returned.

double gsl_histogram2d_xmean (const gsl_histogram2d * h) Function
This function returns the mean of the histogrammed x variable, where the histogram
is regarded as a probability distribution. Negative bin values are ignored for the
purposes of this calculation.

double gsl histogram2d_ymean (const gsl_histogram2d * h) Function
This function returns the mean of the histogrammed y variable, where the histogram
is regarded as a probability distribution. Negative bin values are ignored for the
purposes of this calculation.

double gsl_histogram2d_xsigma (const gsl_histogram2d * h) Function
This function returns the standard deviation of the histogrammed x variable, where
the histogram is regarded as a probability distribution. Negative bin values are ig-
nored for the purposes of this calculation.

double gsl_histogram2d_ysigma (const gsl_histogram2d * h) Function
This function returns the standard deviation of the histogrammed y variable, where
the histogram is regarded as a probability distribution. Negative bin values are ig-
nored for the purposes of this calculation.

double gsl_histogram2d_cov (const gsl_histogram2d * h) Function
This function returns the covariance of the histogrammed x and y variables, where the
histogram is regarded as a probability distribution. Negative bin values are ignored
for the purposes of this calculation.

double gsl_histogram2d_sum (const gsl_histogram2d * h) Function
This function returns the sum of all bin values. Negative bin values are included in
the sum.

21.19 2D Histogram Operations

int gsl_histogram2d_equal_bins_p (const gsl_histogram2d *hl, Function
const gsl_histogram2d *h2)
This function returns 1 if the all of the individual bin ranges of the two histograms
are identical, and 0 otherwise.
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int gsl histogram2d_add (gsl_histogram2d *hl, const Function
gsl_histogram2d *h2)
This function adds the contents of the bins in histogram h2 to the corresponding
bins of histogram hl1, i.e. h{(i,j) = hi(%,j) + ha(7,5). The two histograms must have
identical bin ranges.

int gsl histogram2d_sub (gsl_histogram2d *hl, const Function
gsl_histogram2d *h2)
This function subtracts the contents of the bins in histogram h2 from the correspond-
ing bins of histogram hl, i.e. h{(i,7) = hy(i,7) — ha(7,7). The two histograms must
have identical bin ranges.

int gsl histogram2d_mul (gsl_histogram2d *hl, const Function
gsl_histogram2d *h2)
This function multiplies the contents of the bins of histogram hl by the contents of
the corresponding bins in histogram h2, i.e. h|(i,j) = hy(i,j) * ho(i,j). The two
histograms must have identical bin ranges.

int gsl histogram2d_div (gsl_histogram2d *hl, const Function
gsl_histogram2d *h2)
This function divides the contents of the bins of histogram hl by the contents of
the corresponding bins in histogram h2, i.e. h|(i,7) = hi(i,5)/h2(i,5). The two
histograms must have identical bin ranges.

int gsl_histogram2d_scale (gsl_histogram2d *h, double scale) Function
This function multiplies the contents of the bins of histogram h by the constant scale,
i.e. hi(i,7) = hi(i,7) * scale.

int gsl histogram2d_shift (gsl_histogram2d *h, double offset) Function
This function shifts the contents of the bins of histogram h by the constant offset, i.e.

hi (i, J) = ha(i, J) + offset.

21.20 Reading and writing 2D histograms

The library provides functions for reading and writing two dimensional histograms to a
file as binary data or formatted text.

int gsl histogram2d_fwrite (FILE * stream, const Function
gsl_histogram2d * h)
This function writes the ranges and bins of the histogram h to the stream stream
in binary format. The return value is 0 for success and GSL_EFAILED if there was a
problem writing to the file. Since the data is written in the native binary format it
may not be portable between different architectures.
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int gsl histogram2d_fread (FILE * stream, gsl_histogram2d * h) Function
This function reads into the histogram h from the stream stream in binary format.
The histogram h must be preallocated with the correct size since the function uses
the number of x and y bins in h to determine how many bytes to read. The return
value is 0 for success and GSL_EFAILED if there was a problem reading from the file.
The data is assumed to have been written in the native binary format on the same
architecture.

int gsl histogram2d_fprintf (FILE * stream, const Function

gsl_histogram2d * h, const char * range_format, const char * bin_format)
This function writes the ranges and bins of the histogram h line-by-line to the stream
stream using the format specifiers range_format and bin_format. These should be one
of the %g, %e or %f formats for floating point numbers. The function returns 0 for
success and GSL_EFATILED if there was a problem writing to the file. The histogram
output is formatted in five columns, and the columns are separated by spaces, like
this,

xrange [0]
xrange [0]
xrange [0]
xrange [0]
xrange[1]

xrange[1]
xrange[1]

xrange[1]

xrange [1]
xrange [1]
xrange [1]

xrange [1]
xrange [2]
xrange [2]

xrange [2]

xrange [2]

yrange[0] yrange[1] bin(0,0)
yrange[1] yrange[2] bin(0,1)
yrange[2] yrange[3] bin(0,2)

yrange [ny-1] yrange[ny] bin(0,ny-1)
yrange [0] yrange[1] bin(1,0)
yrange[1] yrange[2] bin(1,1)
yrange[1] yrange[2] bin(1,2)

yrange [ny-1] yrange[ny] bin(1,ny-1)

xrange [nx-1] xrange[nx] yrange[0] yrange[1] bin(nx-1,0)
xrange [nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,1)
xrange [nx-1] xrange[nx] yrange[1l] yrange[2] bin(nx-1,2)

xrange [nx-1] xrange[nx] yrange[ny-1] yrange[ny] bin(nx-1,ny-1)

Each line contains the lower and upper limits of the bin and the contents of the bin.
Since the upper limits of the each bin are the lower limits of the neighboring bins
there is duplication of these values but this allows the histogram to be manipulated
with line-oriented tools.

int gsl histogram2d_fscanf (FILE * stream, gsl_histogram2d * h) Function
This function reads formatted data from the stream stream into the histogram h. The
data is assumed to be in the five-column format used by gsl_histogram_fprintf.
The histogram h must be preallocated with the correct lengths since the function uses
the sizes of h to determine how many numbers to read. The function returns 0 for
success and GSL_EFAILED if there was a problem reading from the file.
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21.21 Resampling from 2D histograms

As in the one-dimensional case, a two-dimensional histogram made by counting events
can be regarded as a measurement of a probability distribution. Allowing for statistical
error, the height of each bin represents the probability of an event where (z,y) falls in the
range of that bin. For a two-dimensional histogram the probability distribution takes the
form p(z,y)drdy where,

p(z,y) = ni;/ (N Ay)
In this equation n;; is the number of events in the bin which contains (x,y), A;; is the area
of the bin and N is the total number of events. The distribution of events within each bin
is assumed to be uniform.

gsl_histogram2d_pdf Data Type
size_t nx, ny
This is the number of histogram bins used to approximate the probability
distribution function in the x and y directions.

double * xrange
The ranges of the bins in the x-direction are stored in an array of nx + 1
elements pointed to by xrange.

double * yrange
The ranges of the bins in the y-direction are stored in an array of ny + 1
pointed to by yrange.

double * sum
The cumulative probability for the bins is stored in an array of nx*ny
elements pointed to by sum.

The following functions allow you to create a gsl_histogram2d_pdf struct which represents
a two dimensional probability distribution and generate random samples from it.

gsl_histogram2d_pdf * gsl_histogram2d_pdf_alloc (size_t nx, Function
size_t ny)
This function allocates memory for a two-dimensional probability distribution of size
nx-by-ny and returns a pointer to a newly initialized gsl_histogram2d_pdf struct.
If insufficient memory is available a null pointer is returned and the error handler is
invoked with an error code of GSL_ENOMEM.

int gsl histogram2d_pdf_init (gsl_histogram2d_pdf * p, const Function
gsl_histogram2d * h)
This function initializes the two-dimensional probability distribution calculated p
from the histogram h. If any of the bins of h are negative then the error handler
is invoked with an error code of GSL_EDOM because a probability distribution cannot
contain negative values.

void gsl_histogram2d_pdf free (gsl_histogram2d_pdf * p) Function
This function frees the two-dimensional probability distribution function p and all of
the memory associated with it.
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int gsl histogram2d_pdf_sample (const gsl_histogram2d_pdf * Function
p, double rl, double r2, double * x, double * y)
This function uses two uniform random numbers between zero and one, rl and r2, to
compute a single random sample from the two-dimensional probability distribution

D.

21.22 Example programs for 2D histograms

This program demonstrates two features of two-dimensional histograms. First a 10 by
10 2d-histogram is created with x and y running from 0 to 1. Then a few sample points
are added to the histogram, at (0.3,0.3) with a height of 1, at (0.8,0.1) with a height of 5
and at (0.7,0.9) with a height of 0.5. This histogram with three events is used to generate
a random sample of 1000 simulated events, which are printed out.

#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_histogram2d.h>

int

main (void)

{
const gsl_rng_type * T;
gsl_rng * r;

gsl_histogram2d * h = gsl_histogram2d_alloc (10, 10);

gsl_histogram2d_set_ranges_uniform (h,
0.0, 1.0,
0.0, 1.0);

gsl_histogram2d_accumulate (h, 0.3, 0.3, 1);
gsl_histogram2d_accumulate (h, 0.8, 0.1, 5);
gsl_histogram2d_accumulate (h, 0.7, 0.9, 0.5);

gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc(T);

int i;
gsl_histogram2d_pdf * p
= gsl_histogram2d_pdf_alloc (h->nx, h->ny);

gsl_histogram2d_pdf_init (p, h);
for (i = 0; i < 1000; i++) {

double x, y;
double u = gsl_rng_uniform (r);
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double v = gsl_rng uniform (r);

int status
= gsl_histogram2d_pdf_sample (p, u, v, &x, &y);

printf("%g %g\n", x, y);
}
}

return O;

¥

The following plot shows the distribution of the simulated events. Using a higher resolution
grid we can see the original underlying histogram and also the statistical fluctuations caused
by the events being uniformly distributed over the area of the original bins.
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22 N-tuples

This chapter describes functions for creating and manipulating ntuples, sets of values
associated with events. The ntuples are stored in files. Their values can be extracted in
any combination and booked in an histogram using a selection function.

The values to be stored are held in a user-defined data structure, and an ntuple is created
associating this data structure with a file. The values are then written to the file (normally
inside a loop) using the ntuple functions described below.

A histogram can be created from ntuple data by providing a selection function and a
value function. The selection function specifies whether an event should be included in the
subset to be analyzed or not. The value function computes the entry to be added to the
histogram entry for each event.

All the ntuple functions are defined in the header file ‘gsl_ntuple.h’

22.1 The ntuple struct

Ntuples are manipulated using the gsl_ntuple struct. This struct contains information
on the file where the ntuple data is stored, a pointer to the current ntuple data row and the
size of the user-defined ntuple data struct.

typedef struct {
FILE *x file;
void * ntuple_data;
size_t size;

} gsl_ntuple;

22.2 Creating ntuples

gsl_ntuple * gsl ntuple_create (char * filename, void * Function
ntuple_data, size_t size)
This function creates a new write-only ntuple file filename for ntuples of size size
and returns a pointer to the newly created ntuple struct. Any existing file with the
same name is truncated to zero length and overwritten. A pointer to memory for the
current ntuple row ntuple_data must be supplied — this is used to copy ntuples in and
out of the file.

22.3 Opening an existing ntuple file

gsl_ntuple * gsl ntuple_open (char * filename, void * Function
ntuple_data, size_t size)
This function opens an existing ntuple file filename for reading and returns a pointer
to a corresponding ntuple struct. The ntuples in the file must have size size. A pointer
to memory for the current ntuple row ntuple_data must be supplied — this is used to
copy ntuples in and out of the file.
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22.4 Writing ntuples

int gsl ntuple_write (gsl_ntuple * ntuple) Function
This function writes the current ntuple ntuple->ntuple_data of size ntuple->size to the
corresponding file.

int gsl ntuple_bookdata (gsl_ntuple * ntuple) Function
This function is a synonym for gsl_ntuple_write

22.5 Reading ntuples

int gsl ntuple_read (gsl_ntuple * ntuple) Function
This function reads the current row of the ntuple file for ntuple and stores the values
in ntuple->data

22.6 Closing an ntuple file

int gsl ntuple_close (gsl_ntuple * ntuple) Function
This function closes the ntuple file ntuple and frees its associated allocated memory.

22.7 Histogramming ntuple values

Once an ntuple has been created its contents can be histogrammed in various ways
using the function gsl_ntuple_project. Two user-defined functions must be provided, a
function to select events and a function to compute scalar values. The selection function
and the value function both accept the ntuple row as a first argument and other parameters
as a second argument.

The selection function determines which ntuple rows are selected for histogramming. It
is defined by the following struct,
typedef struct {
int (* function) (void * ntuple_data, void * params);
void * params;
} gsl_ntuple_select_fn;
The struct component function should return a non-zero value for each ntuple row that is
to be included in the histogram.

The value function computes scalar values for those ntuple rows selected by the selection
function,
typedef struct {
double (* function) (void * ntuple_data, void * params);
void * params;
} gsl_ntuple_value_fn;
In this case the struct component function should return the value to be added to the
histogram for the ntuple row.



Chapter 22: N-tuples

int gsl ntuple_project (gsl_histogram * h, gsl_ntuple * ntuple,
gsl_ntuple_value_fn *value_func, gsl_ntuple_select_fn *select_func)

265

Function

This function updates the histogram h from the ntuple ntuple using the functions

value_func and select_func.

For each ntuple row where the selection function se-

lect_func is non-zero the corresponding value of that row is computed using the func-
tion value_func and added to the histogram. Those ntuple rows where select_func
returns zero are ignored. New entries are added to the histogram, so subsequent calls

can be used to accumulate further data in the same histogram.

22.8 Example programs

The following example programs demonstrate the use of ntuples in managing a large
dataset. The first program creates a set of 100,000 simulated "events", each with 3 associ-
ated values (x,y, z). These are generated from a gaussian distribution with unit variance,

for demonstration purposes, and written to the ntuple file ‘test.dat’.

#include
#include
#include
#include

<config.h>
<gsl/gsl_ntuple.h>
<gsl/gsl_rng.h>
<gsl/gsl_randist.h>

struct data

{
double
double

X5
Y

double z;

};

int

main (void)

{

const gsl_rng_type * T;
gsl_rng * r;

struct data ntuple_row;

int 1i;

gsl_ntuple *ntuple
= gsl_ntuple_create ("test.dat", &ntuple_row,

sizeof (ntuple_row));

gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

for (i =

{

0; 1 < 10000; i++)

ntuple_row.x = gsl_ran_ugaussian (r);
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}

ntuple_row.y = gsl_ran_ugaussian (r);
ntuple_row.z = gsl_ran_ugaussian (r);

gsl_ntuple_write (ntuple);
}

gsl_ntuple_close(ntuple);
return O;

The next program analyses the ntuple data in the file ‘test.dat’. The analysis procedure
is to compute the squared-magnitude of each event, E? = 2?4 3%+ 22, and select only those
which exceed a lower limit of 1.5. The selected events are then histogrammed using their
E? values.

#include <config.h>

#include <math.h>

#include <gsl/gsl_ntuple.h>
#include <gsl/gsl_histogram.h>

struct data

{

};

double x;
double y;
double z;

int sel_func (void *ntuple_data, void *params);
double val_func (void *ntuple_data, void *params);

int
main (void)

{

struct data ntuple_row;
int i;

gsl_ntuple *ntuple
= gsl_ntuple_open ("test.dat", &ntuple_row,
sizeof (ntuple_row));
double lower = 1.5;

gsl_ntuple_select_fn S;
gsl_ntuple_value_fn V;

gsl_histogram *h = gsl_histogram_alloc (100);
gsl_histogram_set_ranges_uniform(h, 0.0, 10.0);

S.function = &sel_func;
S.params = &lower;

V.function = &val_func;
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V.params = 0;

gsl_ntuple_project (h, ntuple, &V, &S);
gsl_histogram_fprintf (stdout, h, "%f", "%f");
gsl_histogram_free (h);

gsl_ntuple_close (ntuple);
return O;

int
sel_func (void #*ntuple_data, void *params)
{

double x, y, z, E, scale;

scale = *(double *) params;

x = ((struct data *) ntuple_data)->x;
y = ((struct data *) ntuple_data)->y;
z = ((struct data *) ntuple_data)->z;

E2=x*x+y*xy+2zx*x z;

return E2 > scale;

}

double
val_func (void #*ntuple_data, void *params)
{

double x, y, z;

x = ((struct data *) ntuple_data)->x;
y = ((struct data *) ntuple_data)->y;
z = ((struct data *) ntuple_data)->z;

return x * x +y *x y + 2z *x zZ;

The following plot shows the distribution of the selected events. Note the cut-off at the
lower bound.
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22.9 References and Further Reading

Further information on the use of ntuples can be found in the documentation for the CERN
packages PAW and HBOOK (available online).



Chapter 23: Monte Carlo Integration 269

23 Monte Carlo Integration

This chapter describes routines for multidimensional Monte Carlo integration. These
include the traditional Monte Carlo method and adaptive algorithms such as VEGAS and
MISER which use importance sampling and stratified sampling techniques. Each algorithm
computes an estimate of a multidimensional definite integral of the form,

Ean Yu
I:/ dx dy...f(z,y,...)

1 Y

over a hypercubic region ((z;,x.), (Y1, Yu),...) using a fixed number of function calls. The
routines also provide a statistical estimate of the error on the result. This error estimate
should be taken as a guide rather than as a strict error bound — random sampling of
the region may not uncover all the important features of the function, resulting in an
underestimate of the error.

The functions are defined in separate header files for each routine, gsl_monte_plain.h,
‘gsl_monte_miser.h’ and ‘gsl_monte_vegas.h’.

23.1 Interface

All of the Monte Carlo integration routines use the same interface. There is an allocator
to allocate memory for control variables and workspace, a routine to initialize those control
variables, the integrator itself, and a function to free the space when done.

Each integration function requires a random number generator to be supplied, and re-
turns an estimate of the integral and its standard deviation. The accuracy of the result is
determined by the number of function calls specified by the user. If a known level of accu-
racy is required this can be achieved by calling the integrator several times and averaging
the individual results until the desired accuracy is obtained.

Random sample points used within the Monte Carlo routines are always chosen strictly
within the integration region, so that endpoint singularities are automatically avoided.

The function to be integrated has its own datatype, defined in the header file
‘gsl_monte.h’.

gsl_monte_function Data Type
This data type defines a general function with parameters for Monte Carlo integration.

double (* f) (double * x, size_t dim, void * params)
this function should return the value f(z, params) for argument x and
parameters params, where x is an array of size dim giving the coordinates
of the point where the function is to be evaluated.

size_t dim
the number of dimensions for x

void * params
a pointer to the parameters of the function
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Here is an example for a quadratic function in two dimensions,
f(x,y) = ax® + by + cy?

with a = 3, b = 2, ¢ = 1. The following code defines a gsl_monte_function F which you
could pass to an integrator:

struct my_f_params { double a; double b; double c; };

double
my_f (double x, size_t dim, void * p) {
struct my_f_params * fp = (struct my_f_params *)p;

if (dim !'= 2)
{
fprintf (stderr, "error: dim != 2");
abort();
}

return fp->a * x[0] * x[0]
+ fp—>b * x[0] * x[1]
+ fp—>c * x[1] * x[1];
}

gsl_monte_function F;
struct my_f_params params = { 3.0, 2.0, 1.0 };

F.function = &my_f;
F.dim = 2;
F.params = &params;
The function f(z) can be evaluated using the following macro,

#define GSL_MONTE_FN_EVAL(F,x)
(*((F)->function)) (x, (F)->dim, (F)->params)

23.2 PLAIN Monte Carlo

The plain Monte Carlo algorithm samples points randomly from the integration region
to estimate the integral and its error. Using this algorithm the estimate of the integral
E(f;N) for N randomly distributed points z; is given by,

B(FiN) = Vi) = 1 D ().

where V' is the volume of the integration region. The error on this estimate o(E; N) is
calculated from the estimated variance of the mean,
v
(B N) = Y () — ()

For large N this variance decreases asymptotically as var(f)/N, where var(f) is the true
variance of the function over the integration region. The error estimate itself should decrease
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as o(f)/v/N. The familiar law of errors decreasing as 1/v/N applies — to reduce the error
by a factor of 10 requires a 100-fold increase in the number of sample points.

The functions described in this section are declared in the header file
‘gsl_monte_plain.h’.

gsl_monte_plain_state * gsl_monte_plain_alloc (size_t dim) Function
This function allocates and initializes a workspace for Monte Carlo integration in dim
dimensions.

int gsl_ monte_plain_init (gsl_monte_plain_state* s) Function

This function initializes a previously allocated integration state. This allows an ex-
isting workspace to be reused for different integrations.

int gsl monte_plain_integrate (gsl_monte_function * f, double * Function

xl, double * xu, size_t dim, size_t calls, gsl_rng * r,
gsl_monte_plain_state * s, double * result, double * abserr)

This routines uses the plain Monte Carlo algorithm to integrate the function f over

the dim-dimensional hypercubic region defined by the lower and upper limits in the

arrays x| and xu, each of size dim. The integration uses a fixed number of function

calls calls, and obtains random sampling points using the random number generator

r. A previously allocated workspace s must be supplied. The result of the integration

is returned in result, with an estimated absolute error abserr.

void gsl_ monte_plain_free (gsl_monte_plain_state* s), Function
This function frees the memory associated with the integrator state s.

23.3 MISER

The MISER algorithm of Press and Farrar is based on recursive stratified sampling. This
technique aims to reduce the overall integration error by concentrating integration points
in the regions of highest variance.

The idea of stratified sampling begins with the observation that for two disjoint regions
a and b with Monte Carlo estimates of the integral F,(f) and E,(f) and variances o2(f)
and o7 (f), the variance Var(f) of the combined estimate E(f) = $(E,(f)+ Ey(f)) is given
by,
oif) | )
4N, 4N,

It can be shown that this variance is minimized by distributing the points such that,
No 04
Ny + N, 04 +0y
Hence the smallest error estimate is obtained by allocating sample points in proportion to
the standard deviation of the function in each sub-region.

Var(f) =

The MISER algorithm proceeds by bisecting the integration region along one coordinate
axis to give two sub-regions at each step. The direction is chosen by examining all d possible
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bisections and selecting the one which will minimize the combined variance of the two sub-
regions. The variance in the sub-regions is estimated by sampling with a fraction of the
total number of points available to the current step. The same procedure is then repeated
recursively for each of the two half-spaces from the best bisection. The remaining sample
points are allocated to the sub-regions using the formula for N, and N,. This recursive
allocation of integration points continues down to a user-specified depth where each sub-
region is integrated using a plain Monte Carlo estimate. These individual values and their
error estimates are then combined upwards to give an overall result and an estimate of its
error.

The functions described in this section are declared in the header file
‘gsl_monte_miser.h’.

gsl_monte_miser_state * gsl monte_miser_alloc (size_t dim) Function
This function allocates and initializes a workspace for Monte Carlo integration in dim
dimensions. The workspace is used to maintain the state of the integration.

int gsl_ monte_miser_init (gsl_monte_miser_state* s) Function
This function initializes a previously allocated integration state. This allows an ex-
isting workspace to be reused for different integrations.

int gsl_ monte_miser_integrate (gsl_monte_function * f, double * Function

xI, double * xu, size_t dim, size_t calls, gsl_rng * r,
gsl_monte_miser_state * s, double * result, double * abserr)

This routines uses the MISER Monte Carlo algorithm to integrate the function f over

the dim-dimensional hypercubic region defined by the lower and upper limits in the

arrays xI and xu, each of size dim. The integration uses a fixed number of function

calls calls, and obtains random sampling points using the random number generator

r. A previously allocated workspace s must be supplied. The result of the integration

is returned in result, with an estimated absolute error abserr.

void gsl_monte_miser_free (gsl_monte_miser_state* s), Function
This function frees the memory associated with the integrator state s.

The MISER algorithm has several configurable parameters. The following variables can
be accessed through the gsl_monte_miser_state struct,

double estimate_frac Variable
This parameter specifies the fraction of the currently available number of function
calls which are allocated to estimating the variance at each recursive step. The
default value is 0.1.

size_t min_calls Variable
This parameter specifies the minimum number of function calls required for each
estimate of the variance. If the number of function calls allocated to the estimate using
estimate_frac falls below min_calls then min_calls are used instead. This ensures that
each estimate maintains a reasonable level of accuracy. The default value of min_calls
is 16 * dim.
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size_t min_calls_per_bisection Variable
This parameter specifies the minimum number of function calls required to pro-
ceed with a bisection step. When a recursive step has fewer calls available than
min_calls_per_bisection it performs a plain Monte Carlo estimate of the current sub-
region and terminates its branch of the recursion. The default value of this parameter
is 32 * min_calls.

double alpha Variable
This parameter controls how the estimated variances for the two sub-regions of a
bisection are combined when allocating points. With recursive sampling the over-
all variance should scale better than 1/N, since the values from the sub-regions will
be obtained using a procedure which explicitly minimizes their variance. To accom-
modate this behavior the MISER algorithm allows the total variance to depend on a
scaling parameter «,

Oq gy

S NE N

The authors of the original paper describing MISER recommend the value a« = 2 as

a good choice, obtained from numerical experiments, and this is used as the default

value in this implementation.

Var(f)

double dither Variable
This parameter introduces a random fractional variation of size dither into each bisec-
tion, which can be used to break the symmetry of integrands which are concentrated
near the exact center of the hypercubic integration region. The default value of dither
is zero, so no variation is introduced. If needed, a typical value of dither is around

0.1.

23.4 VEGAS

The VEGAS algorithm of Lepage is based on importance sampling. It samples points from
the probability distribution described by the function | f|, so that the points are concentrated
in the regions that make the largest contribution to the integral.

In general, if the Monte Carlo integral of f is sampled with points distributed according
to a probability distribution described by the function g, we obtain an estimate E,(f;N),

Ey(f;N)=E(f/g;:N)
with a corresponding variance,
Vary(f;N) =Var(f/g;N)

If the probability distribution is chosen as g = |f|/I(|f]) then it can be shown that the
variance V,(f; N) vanishes, and the error in the estimate will be zero. In practice it is not
possible to sample from the exact distribution g for an arbitrary function, so importance
sampling algorithms aim to produce efficient approximations to the desired distribution.

The VEGAS algorithm approximates the exact distribution by making a number of passes
over the integration region while histogramming the function f. Each histogram is used to
define a sampling distribution for the next pass. Asymptotically this procedure converges
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to the desired distribution. In order to avoid the number of histogram bins growing like
K the probability distribution is approximated by a separable function: g(x;,xs,...) =
g1(x1)g2(z2) . . . so that the number of bins required is only Kd. This is equivalent to locating
the peaks of the function from the projections of the integrand onto the coordinate axes.
The efficiency of VEGAS depends on the validity of this assumption. It is most efficient
when the peaks of the integrand are well-localized. If an integrand can be rewritten in a
form which is approximately separable this will increase the efficiency of integration with
VEGAS.

VEGAS incorporates a number of additional features, and combines both stratified sam-
pling and importance sampling. The integration region is divided into a number of “boxes”,
with each box getting in fixed number of points (the goal is 2). Each box can then have a
fractional number of bins, but if bins/box is less than two, Vegas switches to a kind variance
reduction (rather than importance sampling).

gsl_monte_vegas_state * gsl monte_vegas_alloc (size_t dim) Function
This function allocates and initializes a workspace for Monte Carlo integration in dim
dimensions. The workspace is used to maintain the state of the integration.

int gsl_monte_vegas_init (gsl_monte_vegas_state* s) Function
This function initializes a previously allocated integration state. This allows an ex-
isting workspace to be reused for different integrations.

int gsl_ monte_vegas_integrate (gsl_monte_function * f, double * Function
xI, double * xu, size_t dim, size_t calls, gsl_rng * r,
gsl_monte_vegas_state * s, double * result, double * abserr)
This routines uses the VEGAS Monte Carlo algorithm to integrate the function f over
the dim-dimensional hypercubic region defined by the lower and upper limits in the
arrays xI and xu, each of size dim. The integration uses a fixed number of function
calls calls, and obtains random sampling points using the random number generator
r. A previously allocated workspace s must be supplied. The result of the integration
is returned in result, with an estimated absolute error abserr. The result and its error
estimate are based on a weighted average of independent samples. The chi-squared per
degree of freedom for the weighted average is returned via the state struct component,
s->chisq, and must be consistent with 1 for the weighted average to be reliable.

void gsl_monte_vegas_free (gsl_monte_vegas_statex s), Function
This function frees the memory associated with the integrator state s.

The VEGAS algorithm computes a number of independent estimates of the integral inter-
nally, according to the iterations parameter described below, and returns their weighted
average. Random sampling of the integrand can occasionally produce an estimate where
the error is zero, particularly if the function is constant in some regions. An estimate with
zero error causes the weighted average to break down and must be handled separately.
In the original Fortran implementations of VEGAS the error estimate is made non-zero by
substituting a small value (typically 1e-30). The implementation in GSL differs from this
and avoids the use of an arbitrary constant — it either assigns the value a weight which
is the average weight of the preceding estimates or discards it according to the following
procedure,
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current estimate has zero error, weighted average has finite error
The current estimate is assigned a weight which is the average weight of the
preceding estimates.

current estimate has finite error, previous estimates had zero error
The previous estimates are discarded and the weighted averaging procedure
begins with the current estimate.

current estimate has zero error, previous estimates had zero error
The estimates are averaged using the arithmetic mean, but no error is computed.

The VEGAS algorithm is highly configurable. The following variables can be accessed
through the gsl_monte_vegas_state struct,

double result Variable

double sigma Variable
These parameters contain the raw value of the integral result and its error sigma from
the last iteration of the algorithm.

double chisq Variable
This parameter gives the chi-squared per degree of freedom for the weighted estimate
of the integral. The value of chisq should be close to 1. A value of chisq which differs
significantly from 1 indicates that the values from different iterations are inconsistent.
In this case the weighted error will be under-estimated, and further iterations of the
algorithm are needed to obtain reliable results.

double alpha Variable
The parameter alpha controls the stiffness of the rebinning algorithm. It is typically
set between one and two. A value of zero prevents rebinning of the grid. The default
value is 1.5.

size_t iterations Variable
The number of iterations to perform for each call to the routine. The default value
is 5 iterations.

int stage Variable

Setting this determines the stage of the calculation. Normally, stage = 0 which begins
with a new uniform grid and empty weighted average. Calling vegas with stage =
1 retains the grid from the previous run but discards the weighted average, so that
one can “tune” the grid using a relatively small number of points and then do a large
run with stage = 1 on the optimized grid. Setting stage = 2 keeps the grid and the
weighted average from the previous run, but may increase (or decrease) the number
of histogram bins in the grid depending on the number of calls available. Choosing
stage = 3 enters at the main loop, so that nothing is changed, and is equivalent to
performing additional iterations in a previous call.

int mode Variable
The possible choices are GSL_VEGAS_MODE_IMPORTANCE, GSL_VEGAS_MODE_
STRATIFIED, GSL_VEGAS_MODE_IMPORTANCE_ONLY. This determines whether VEGAS



Chapter 23: Monte Carlo Integration 276

will use importance sampling or stratified sampling, or whether it can pick on
its own. In low dimensions VEGAS uses strict stratified sampling (more precisely,
stratified sampling is chosen if there are fewer than 2 bins per box).

int verbose Variable
FILE * ostream Variable
These parameters set the level of information printed by VEGAS. All information is
written to the stream ostream. The default setting of verbose is -1, which turns off
all output. A verbose value of 0 prints summary information about the weighted
average and final result, while a value of 1 also displays the grid coordinates. A value
of 2 prints information from the rebinning procedure for each iteration.

23.5 Examples

The example program below uses the Monte Carlo routines to estimate the value of the
following 3-dimensional integral from the theory of random walks,

+ dk: + dk: + dk: 1
(1 — cos(k;) cos(ky) cos(k.))
The analytic value of this 1ntegra1 can be shown to be I = T(1/4)/(4r3) =

1.393203929685676859.... The integral gives the mean time spent at the origin by a
random walk on a body-centered cubic lattice in three dimensions.

For simplicity we will compute the integral over the region (0,0,0) to (w7, 7) and
multiply by 8 to obtain the full result. The integral is slowly varying in the middle of the
region but has integrable singularities at the corners (0,0, 0), (0,7, ), (7,0, 7) and (m, 7, 0).
The Monte Carlo routines only select points which are strictly within the integration region
and so no special measures are needed to avoid these singularities.

#include <stdlib.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_monte.h>
#include <gsl/gsl_monte_plain.h>
#include <gsl/gsl_monte_miser.h>
#include <gsl/gsl_monte_vegas.h>

/* Computation of the integral,
I = int (dx dy dz)/(2pi)~3 1/(1l-cos(x)cos(y)cos(z))

over (-pi,-pi,-pi) to (+pi, +pi, +pi). The exact answer
is Gamma(1/4)"4/(4 pi~3). This example is taken from
C.Itzykson, J.M.Drouffe, "Statistical Field Theory -
Volume 1", Section 1.1, p21, which cites the original
paper M.L.Glasser, I.J.Zucker, Proc.Natl.Acad.Sci.USA 74
1800 (1977) =/

/* For simplicity we compute the integral over the region
(0,0,0) -> (pi,pi,pi) and multiply by 8 */
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double exact = 1.3932039296856768591842462603255;

double
g (double *k, size_t dim, void *params)
{
double A = 1.0 / (M_PI * M_PI * M_PI);
return A / (1.0 - cos (k[0]) * cos (k[1]) * cos (k[2]));
}
void
display_results (char *title, double result, double error)
{
printf ("%s \n", title);
printf ("result = % .6f\n", result);
printf ("sigma = % .6f\n", error);
printf ("exact = % .6f\n", exact);
printf ("error = 9 .6f = J.1lg sigma\n", result - exact,
fabs (result - exact) / error);
}
int
main (void)
{
double res, err;
double x1[3] = { 0, 0, 0 };
double xul3] = { M_PI, M_PI, M_PI };

const gsl_rng_type *T;
gsl_rng *r;

gsl_monte_function G = { &g, 3, 0 };
size_t calls = 500000;
gsl_rng_env_setup ();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

gsl_monte_plain_state *s = gsl_monte_plain_alloc (3);
gsl_monte_plain_integrate (&G, x1, xu, 3, calls, r, s,

&res, &err);
gsl_monte_plain_free (s);

display_results ("plain", res, err);
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gsl_monte_miser_state *s = gsl_monte_miser_alloc (3);
gsl_monte_miser_integrate (&G, x1, xu, 3, calls, r, s,

&res, &err);
gsl_monte_miser_free (s);

display_results ("miser", res, err);

gsl_monte_vegas_state *s = gsl_monte_vegas_alloc (3);
gsl_monte_vegas_integrate (&G, x1, xu, 3, 10000, r, s,
&res, &err);

display_results ("vegas warm-up", res, err);

printf ("converging...\n");

do
{
gsl_monte_vegas_integrate (&G, x1, xu, 3, calls/5, r, s,
&res, &err);
printf ("result = % .6f sigma = %, .6f "
"chisq/dof = %.1f\n", res, err, s->chisq);
}

while (fabs (s->chisq - 1.0) > 0.5);
display_results ("vegas final", res, err);

gsl_monte_vegas_free (s);
}

return O;

}

With 500,000 function calls the plain Monte Carlo algorithm achieves a fractional error of
0.6%. The estimated error sigma is consistent with the actual error, and the computed
result differs from the true result by about one standard deviation,

plain

result = 1.385867

sigma = 0.007938

exact = 1.393204

error = -0.007337 = 0.9 sigma

The MISER algorithm reduces the error by a factor of two, and also correctly estimates the
error,

miser

result = 1.390656

sigma = 0.003743

exact = 1.393204

error = -0.002548 = 0.7 sigma
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In the case of the VEGAS algorithm the program uses an initial warm-up run of 10,000
function calls to prepare, or "warm up", the grid. This is followed by a main run with
five iterations of 100,000 function calls. The chi-squared per degree of freedom for the five
iterations are checked for consistency with 1, and the run is repeated if the results have not
converged. In this case the estimates are consistent on the first pass.

vegas warm-up ==================
result = 1.386925

sigma = 0.002651

exact = 1.393204

error = -0.006278 = 2 sigma
converging. ..

result = 1.392957 sigma = 0.000452 chisq/dof = 1.1
vegas final
result = 1.392957

sigma = 0.000452
exact = 1.393204
error = -0.000247 = 0.5 sigma

If the value of chisq had differed significantly from 1 it would indicate inconsistent results,
with a correspondingly underestimated error. The final estimate from VEGAS (using a sim-
ilar number of function calls) is significantly more accurate than the other two algorithms.

23.6 References and Further Reading

The MISER algorithm is described in the following article,
W.H. Press, G.R. Farrar, Recursive Stratified Sampling for Multidimensional Monte
Carlo Integration, Computers in Physics, v4 (1990), pp190-195.

The VEGAS algorithm is described in the following papers,

G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, Journal of
Computational Physics 27, 192-203, (1978)

G.P. Lepage, VEGAS: An Adaptive Multi-dimensional Integration Program, Cornell
preprint CLNS 80-447, March 1980
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24 Simulated Annealing

Stochastic search techniques are used when the structure of a space is not well understood
or is not smooth, so that techniques like Newton’s method (which requires calculating
Jacobian derivative matrices) cannot be used. In particular, these techniques are frequently
used to solve combinatorial optimization problems, such as the traveling salesman problem.

The goal is to find a point in the space at which a real valued energy function (or cost
function) is minimized. Simulated annealing is a minimization technique which has given
good results in avoiding local minima; it is based on the idea of taking a random walk
through the space at successively lower temperatures, where the probability of taking a
step is given by a Boltzmann distribution.

The functions described in this chapter are declared in the header file ‘gsl_siman.h’.

24.1 Simulated Annealing algorithm

The simulated annealing algorithm takes random walks through the problem space,
looking for points with low energies; in these random walks, the probability of taking a step
is determined by the Boltzmann distribution,

p = e~ (Bit1—Eq)/(kT)

if F;11 > F;, and p=1 when F;.; < F,.
In other words, a step will occur if the new energy is lower. If the new energy is higher,

the transition can still occur, and its likelihood is proportional to the temperature T' and
inversely proportional to the energy difference E;,; — E;.

The temperature T is initially set to a high value, and a random walk is carried out
at that temperature. Then the temperature is lowered very slightly according to a cooling
schedule, for example: T' — T'/ur where pr is slightly greater than 1.

The slight probability of taking a step that gives higher energy is what allows simulated
annealing to frequently get out of local minima.

24.2 Simulated Annealing functions

void gsl_siman_solve (const gsl_rng * r, void *x0_p, Function

gsl_siman_Efunc_t Ef, gsl_siman_step_t take_step, gsl_siman_metric_t
distance, gsl_siman_print_t print_position, gsl_siman_copy_t copyfunc,
gsl_siman_copy_construct_t copy_constructor, gsl_siman_destroy_t
destructor, size_t element_size, gsl_siman_params_t params)

This function performs a simulated annealing search through a given space. The space

is specified by providing the functions Ef an