正方形領域における重調和作用素の固有値問題に対 する差分方程式

桂田祐史 (明大理工)*1 平野裕輝 (愛知県立安城東高校)

1. はじめに

平面領域 Ω において、重調和作用素 $\Delta^2 = \frac{\partial^4}{\partial x^4} + 2\frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}$ の固有値問題

$$\Delta^2 u = \lambda u \quad (\text{in } \Omega), \tag{1}$$

$$\mu \Delta u + (1-\mu) \frac{\partial^2 u}{\partial n^2} = 0 \quad (\text{on } \partial\Omega), \tag{2}$$

$$\frac{\partial}{\partial n} \left(\Delta u + (1-\mu) \frac{\partial^2 u}{\partial \tau^2} \right) = 0 \quad (\text{on } \partial \Omega), \tag{3}$$

領域の角点で
$$\frac{\partial^2 u}{\partial \tau \partial n}$$
 の片側極限が等しい (4)

を考える。ここで μ は与えられた定数で、n は Ω の境界上の点における外向き単位法線 ベクトル、 τ は単位接線ベクトルを表す。これは "free edge"を持つ薄い板の固有振動 のモデルであり、 μ は材質の Poisson 比と呼ばれる無次元数で、一般に $-1 \le \mu \le 1/2$, 金属の場合は 0.3 程度の値を取るとされている。

方程式 (1)-(4) は、汎関数 J, K を

$$J[u] := \iint_{\Omega} \left[(\triangle u)^2 - 2(1-\mu)(u_{xx}u_{yy} - u_{xy}^2) \right] dx \, dy, \quad K[u] := \iint_{\Omega} u^2 \, dx \, dy$$

で定義したとき、K = 1という条件のもとで J が停留となる条件から導かれる (Rayleigh [8], Gazzola-Grunau-Sweers [4], 特に角点における境界条件に関する注意については Lamb [7], 加藤 [6])。

この問題は、 Ω が長方形領域であっても、さらに境界条件が (2)-(4) の代わりに同次 Dirichlet 境界条件 $u = \partial u / \partial n = 0$ (工学では "clamped edge" の境界条件と呼ばれる) であっても、固有値 λ , 固有関数 u = u(x, y) の具体的表現が得られないことが知られ ている。

本講演では、 Ω が正方形領域 $(0,1) \times (0,1)$ である場合に、(1)-(4) に対する差分方 程式を導出し、数値実験の結果を実際の板の振動実験の結果 (Waller [10]) と照合する ことを目標とする。この場合、角点とは (0,0), (1,0), (1,1), (0,1) の4点で、(4) は $\partial^2 u/\partial x \partial y = 0$ と同値であることを注意しておく。

この問題を考えた動機は、振動する板に砂状の粉をまいたときに現れる特徴的なパ ターンである、有名な Chladni 図形 (固有関数の節に砂が止まって、節線が浮かび上 がる、とされている)をコンピューター上に再現したい、という素朴なものである。 Dirichlet 境界条件の場合の差分方程式については、文献 (Bauer-Reiss [1])が見つかっ たが、free edges の場合は調べた限りでは見当たらなかった。一方で工学分野では、free edges の場合を、Rayleigh-Ritz の方法で近似計算した結果が数多く発表されている。

 $^{^{*1}}e$ -mail: katurada@meiji.ac.jp

そもそも Ritz が方法を提唱した論文 [9] で扱われている問題がこの板の振動であった ので、当然のことなのかもしれない。

2. 離散化

2.1. 差分方程式の導出

紙数の制限より差分方程式を記すことが出来ないため、方針のみ示す(詳細は平野 [5])。 正方形領域の各辺を N 等分して格子を作って離散化する。すなわち、

$$h := \frac{1}{N}, \quad x_i = ih, \quad y_j = jh, \quad u_{ij} := u(x_i, y_j)$$
 (5)

とおき、 u_{ij} の近似となる差分解 U_{ij} を求める。境界条件の近似に中心差分近似を用いるため、いわゆる仮想格子点を導入する。具体的には、 $-2 \le i \le N+2, -2 \le j \le N+2$ の範囲の(i, j)についての格子点を考える。方程式に現れる導関数は、すべて中心差分近似

$$f'(x) \sim \frac{1}{2h}(f(x+h) - f(x-h)), \quad f''(x) \sim \frac{1}{h^2}(f(x+h) - 2f(x) + f(x-h)),$$

$$f^{(3)}(x) \sim \frac{1}{h^3}(f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)),$$

$$f^{(4)}(x) \sim \frac{1}{h^4}(f(x+2h) - 4f(x+h) + 6f(x) - 4f(x-h) + f(x-2h))$$

(あるいはそれらを組み合わせた式)を用いて差分近似する。例えば uxxyy については、

$$u_{xxyy}(x,y) \sim \frac{1}{h^4} \Big[u(x+h,y+h) + u(x-h,y+h) + u(x-h,y-h) + u(x-h,y-h) - 2u(x+h,y) - 2u(x-h,y) - 2u(x,y+h) - 2u(x,y-h) + 4u(x,y) \Big].$$

次のようにすると、未知数 U_{ii} の個数と方程式の個数が等しくなる。

- 領域内部の格子点においては、(1) に対応した差分方程式を課す
- 角点以外の辺上の格子点においては、(1), (2), (3) に対応した差分方程式を課す
- 角点では(1), (2), (3), (4) に対応した差分方程式を課す

こうして得られた差分方程式から、境界条件に対応する差分方程式を用いて、仮想 格子点における U_{ij} (つまり i, j のいずれかが負か N より大きいもの) を消去すること で、ある正方行列 P に関する固有値問題 $PU = \lambda U$ が得られる。ここで

$$\boldsymbol{U} = (U_{00}, U_{10}, \cdots, U_{N0}, U_{0.1}, \cdots, U_{N1}, \cdots, U_{0.N}, \cdots, U_{NN})^T \in \mathbb{R}^{(N+1)(N+1)}.$$

2.2. 対称行列の一般化固有値問題への変換

N+1 次正方行列 V を

$$V := \operatorname{diag}\left(\frac{1}{\sqrt{2}}, 1, \dots, 1, \frac{1}{\sqrt{2}}\right)$$

で定め、 $Q := V \otimes V$ (\otimes は行列の Kronecker 積を表す) とおく。 $u := QU, \mathcal{P} := QPQ^{-1}$ とおくと、 $PU = \lambda U$ は $\mathcal{P}u = \lambda u$ に変換され、 \mathcal{P} は対称行列となる (この変換は、 Neumann 境界条件下の Laplacian の固有値問題に対しても有効であり、もともとはその問題に対して発見したものである)。なお

3. 数值実験

メモリーを 16GB 搭載したコンピューター (PowerMac) で、MATLAB を用いて数値 計算を行った。

係数行列を計算する関数 (Poisson 比 μ と辺の分割数 N を引数とする) のプログ ラム plate_f1.m は注釈をのぞき74 行ほどである (http://www.math.meiji.ac.jp/ ~mk/chladni/ で公開する)。N = 10,20,40,...,1280 の場合に、MATLAB 標準の関 数 eigs()を用いて、小さい方から 200 個の固有値とそれに属する固有ベクトルを計 算し、固有関数の節線を描画して、Waller の実験結果 ([10]) や Chladni による図 ([2], [3], [12])と比較した。詳細は講演で紹介するが、Waller [10] が実験で得た Chladni 図 形をほぼ再現することに成功した。

参考文献

- L. Bauer and E. L. Reiss, Block five diagonal matrices and the fast numerical solution of the biharmonic equation, Math. Comp., Vol. 26, No. 118, pp. 311–326 (1972).
- [2] Chladni, Ernst Florens Friedrich, Entdeckungen über die Theorie des Klanges (1787).
- [3] Chladni, Ernst Florens Friedrich, Neue Beyträge zur Akustik (1817).
- [4] Filippo Gazzola, Hans-Christoph Grunau and Guido Sweers, Polyharmonic boundary value problems, Springer Lecture Note in Mathematics 1991, Springer (2010).
- [5] 平野裕輝,正方形領域における重調和作用素の固有値問題— 差分法によるクラドニ図形の 解析—,明治大学大学院理工学研究科基礎理工学専攻修士論文,2012年3月.
 http://www.math.meiji.ac.jp/~mk/labo/open/2011-hirano.pdf
- [6] 加藤敏夫, 変分法, 寺沢寛一編「自然科学者のための数学概論 応用編」 (1960).
- [7] Horace Lamb, On the flexure of an elastic plate, Proceedings of London Mathematical Society, vol. 21, pp. 70–90 (1889).
- [8] Lord Rayleigh, The theory of sound (1877).
- [9] von Walter Ritz, Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern, Ann. Phys., 28 (1909), pp. 737–786.
- [10] Mary D. Waller, Vibrations of free square plates: part I. normal vibrating modes, Physical Society, Vol. 51 (1939), pp. 831–844.
- [11] Mary D. Waller, Chladni figures a study in symmetry, G. Bell (1961).
- [12] Charles Wheatstone, On the figures obtained by strewing sand on vibrating surfaces, commonly called acoustic figures, Philosophical Transactions of the Royal Society of London, Vol. 123, pp. 593–634 (1833).

A. 予稿の誤植の訂正・その他

• 予稿の2ページめ真ん中あたり(符号の書き間違い)

$$u_{xxyy}(x,y) \sim \frac{1}{h^4} \Big[u(x+h,y+h) + u(x-h,y+h) + u(x+h,y-h) + u(x-h,y-h) \\ - 2u(x+h,y) - 2u(x-h,y) - 2u(x,y+h) - 2u(x,y-h) + 4u(x,y) \Big].$$

• 予稿の2ページめ下 (見出しの修正し忘れ)

2.2 対称行列の一般化固有値問題への変換 ↓ 2.2 対称行列の固有値問題への変換

- 予稿を書いてから、ネットで以下の文書を見つけた。
 - 1. Martin J. Gander and Gerhard Wanner, From Euler, Ritz and Galerkin to modern computing, 2011. (SIAM Review に出る, そうです)
 - Martin J. Gander and Felix Kwok, Chladni figures and the Tacoma bridge: Motivating PDE eigenvalue problems via vibrating plates. (SIAM Review に… (同上), Ritzの方法による Maple プログラムと有限体積法による MAT-LAB プログラムが載っている)